

EN 15650:2010-09

FIRE DAMPER

FDMA PM

Blade control out of axis

ΜΛΝϽίκ

These technical specifications state a row of manufactured sizes and models of fire dampers (further only dampers) FDMA PM. It is valid for production, designing, ordering, delivery, assembly and operation.

I. CONTENT

II. GENERAL INFORMATION	3
1. Description	3
2. Design	4
3. Communication and control devices	17
4. Dimensions, weights and effective area	20
5. Placement and Assembly	32
6. Statement of installations	29
7. Installation frames	65
8. Thin shaft wall	80
9. Installation in Fire resistant foam	85
10. Installation outside of wall construction EIS60	87
11. Suspension system	91
III. TECHNICAL DATA	98
12. Pressure loss	98
13. Coefficient of local pressure loss	99
14. Noise data	100
IV. MATERIAL, FINISHING	102
15. Material	102
V. INSPECTION, TESTING	103
16. Inspection, testing	103
VI. TRANSPORTATION AND STORAGE	103
17. Logistic terms	103
VII. ASSEMBLY, ATTENDANCE, MAINTENANCE AND REVISIONS	103
18. Assembly	103
19. Entry into service and revisions	104
20. Spare parts	105
21. Restore function of actuating mechanism after fuses initiation	105
VIII. ORDERING INFORMATION	106
22. Ordering key	106
IX. PRODUCT DATA	107
23. Data label	107

II. GENERAL INFORMATION

1. Description

1.1. Fire dampers are shutters in ducts of air-conditioning devices that prevent spreading the fire and combustion products from one fire segment to the other one by means of closing the duct in the points of fire separating constructions.

Dampers blade automatically closes air duct using a shutting spring or an actuating mechanism back spring. The shutting spring is started by releasing an initiation lever. The impulse for releasing the lever can be either a manual one, a thermal one. The back spring of the actuating mechanism is started when the thermoelectrical starting mechanism BAT is activated, when a reset button on BAT is pushed or when a power supply of the actuating mechanism is stopped. The damper is sealed with a silicon packing against smoke penetration after closing the blade. At the same time, the damper blade is bedded in a material which enlarges its capacity and air proofs the air duct.

Rectangular dampers have two inspection holes.

Round dampers have one inspection hole, since the shutting device and the inspection hole can be set into the most advantageous position (with respect to the operation and manipulation with the control device).

Dampers FDMA PM are variant of FDMA dampers with blade control out of axis.

Fig. 1 FDMA PM with actuating mechanism - rectangular

Fig. 3 FDMA PM with mechanical control - rectangular

Fig. 4 FDMA PM - with mechanical control - round

1.2. Damper characteristics

- CE certified acc. to EN 15650
- Tested in accordance with EN 1366-2
- Classified acc. to EN 13501-3+A1
- Fire resistance EIS 120, EIS 90
- External Casing leakage class C, Internal leakage class 2 acc. to EN 1751
- Cycling test in class C 10 000 acc. to EN 15650
- Corrosion resistant acc. to EN 15650
- ES Certificate of conformity No. 1391-CPR-2016/0158
- Declaration of Performance No. PM/PKTM_90/01/16/1
- Hygienic assessment of fire dampers Report No. 1.6/13/16/1
- **1.3.** Working conditions

Right damper function is secured under the following conditions:

- a) Maximum air circulation speed: 12 m.s.
- Maximum pressure difference: 1200 Pa
- b) The air circulation in the whole damper section must be secured as steady on whole surface.

Operation of the dampers does not depend on the direction of air circulation. The dampers can be located in an arbitrary position.

Dampers are suitable for systems without abrasive, chemical and adhesive particles.

Dampers are designed for macroclimatic areas with mild climate according to EN 60 721-3-3.

Temperature in the place of installation is permitted to range from -30°C to +50°C.

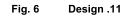
2. Design

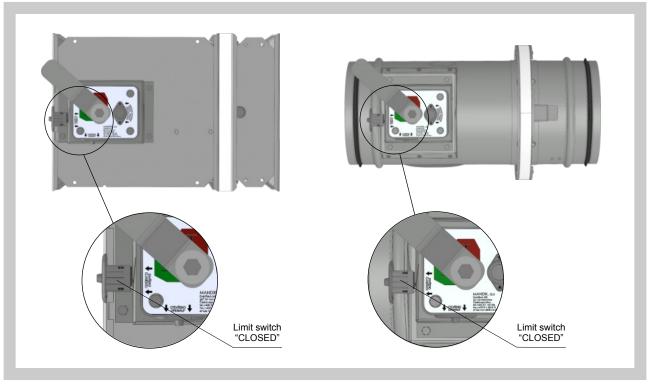
2.1. Design with mechanical control

Design .01

Design with mechanical control with a thermal protective fuse which actuates the shutting device, after the nominal start temperature 72°C has been reached. Automatic initiation of the shutting device is not activated if the temperature does not exceed 70°C. In case that other start temperatures are required, thermal fuses with nominal start temperature +104°C or +147°C can be supplied (this requirement must be specified in the order).

Fig. 5 Design .01

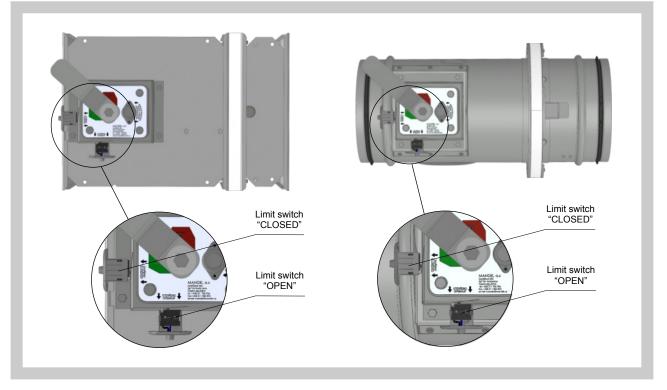


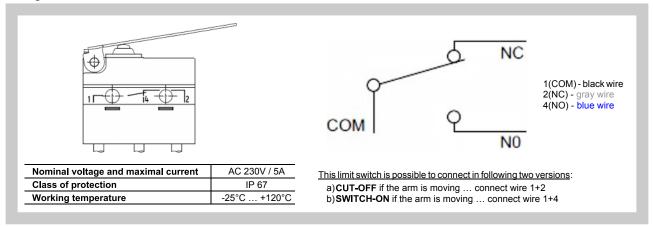

ATTENTION:

Mechanisms are produced in four designs **M1** to **M4**, difference is only in size of inner spring, which closes the fire damper. For the size of fire dampers is always assigned the size of mechanism - **Tab 4.3.1.**, **Tab 4.4.1. a Tab 4.4.2.** It is not recommended to use different size of mechanism, than given by the manufacturer, otherwise, there is a risk of fire damper destruction.

Design .11

Design .01 with mechanical control can be complemented with a limit switch signalling of the damper blade position "CLOSED". Cable is connected directly to limit switch.




Design .80

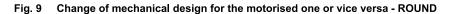

Design .01 with mechanical control can be complemented with a terminal switches signaling of the damper blade position "CLOSED" and "OPEN". Limit switches are connected via damper casing, cables are connected directly to limit switches.

Fig. 7 Design .80

Fig. 8 Limit switch G905-300E03W1

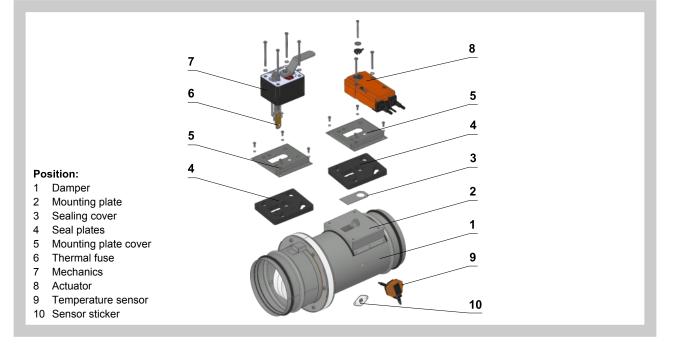
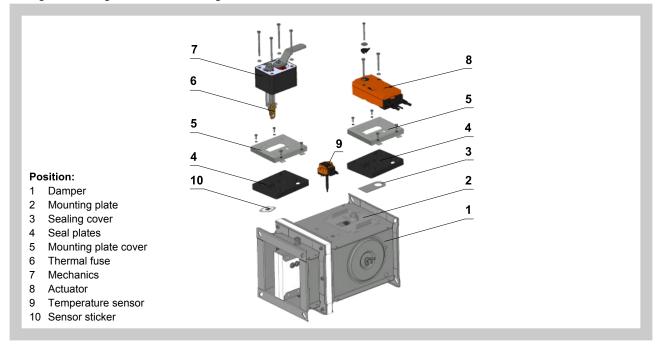



Fig. 10 Change of mechanical design for the motorised one or vice versa - RECTANGULAR

2.2. Design with actuating mechanism

Design .40, .50

FDMA PM is always equipped by electric actuating mechanism BFL, BFN, BF 230-TN or BFL, BFN, BF 230-TN (further only "actuating mechanism"). After being connected to power supply AC/DC 24V or 230V, the actuating mechanism displaces the damper blade into operation position "OPEN" and at the same time it pre-stretches its back spring. When the actuating mechanism is under voltage, the damper blade is in the position "OPEN" and the back spring is pre-stretched. Time needed for full opening of the flap blade from the position "CLOSED" to the position "OPEN" is maximum 120 sec. If the actuating power supply is cut off (due to loss of supply voltage, or pushing the reset button on the thermoelectrical starting mechanism BAT), the back spring displaces the damper blade into the breakdown position "CLOSED". The time of displacing the blade from the position "OPEN" to the position "OPEN" to the position, the actuating mechanism starts to re-displace the damper blade into the position "OPEN".

A thermoelectrical starting mechanism BAT, which contains two thermal fuses Tf1 and Tf2, is a part of the actuating mechanism. These fuses are activated when temperature +72°C has been exceeded (the fuse Tf1 when the temperature around the damper and the fuses Tf2 when the temperature inside the air-conditioning piping has been exceeded). After the thermal fuse Tf1 or Tf2 has been activated, the power supply is permanently and irreversibly cut off and the actuating mechanism, by means of the pre-stretched spring, displaces the damper blade into the breakdown position "CLOSED".

Signalisation of damper blade position "OPEN" a "CLOSE" is provided by two limit switches.

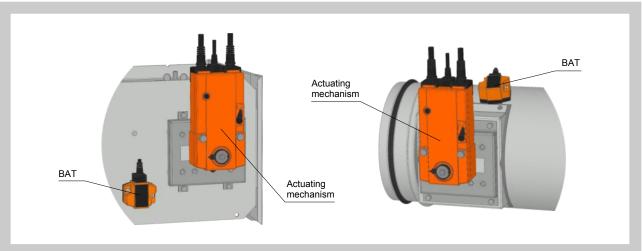
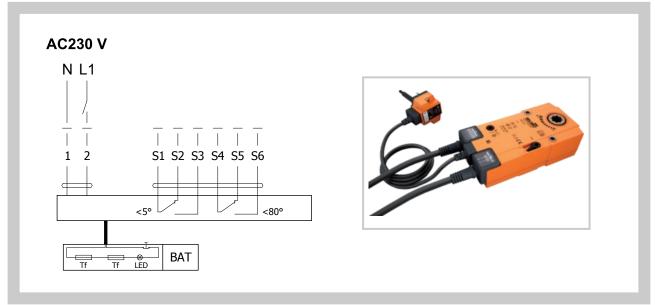
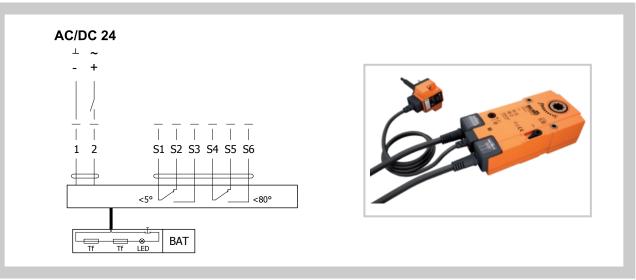
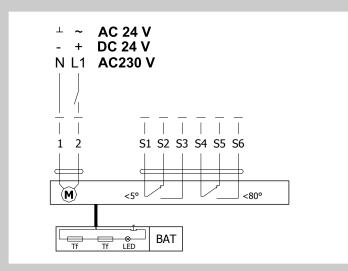




Fig. 12 Actuating mechanism BELIMO BFL (BFN) 230-T


Fig. 13 Actuating mechanism BELIMO BFL, BFN 24-T(-ST)

Tab. 2.2.1. Actuating mechanism BELIMO BFL 24-T(-ST), BFN 24-T(-ST), BFL 230-T a BFN 230-T

Actuating mechanism BELIMO	BFL, BFN 230-T	BFL, BFN 24-T(-ST)	
Nominal voltage	AC 230 V 50/60 Hz	AC 24 V 50/60 Hz DC 24 V	
Power consumption - motoring - holding	3,5/5 W 1,1/2,1 W	2,5/4 W 0,8/1,4 W	
Dimensioning	6,5/10 VA (Imax 4 A @ 5 ms)	4/6 VA (Imax 8,3 A @ 5 ms)	
Protection class	Ш	Ш	
Degree of protection	IP	54	
Running time - motor - spring return	<60 s ~ 20 s		
Ambient temperature - normal duty - safety duty - non-operating temperature	- 30°C +55°C The safe position will be attained up to max. +75°C - 40°C +55°C		
Connecting - motor - auxiliary switch	cable 1 m, 2 x 0,75 mm ² (BFL/BFN 24-T-ST) with 3-pin plug-in connectors cable 1 m, 6 x 0,75 mm ² (BFL/BFN 24-T-ST) with 6-pin plug-in connectors		
Thermal trips	rmal trips duct outside temperature +72°C duct inside temperature +72°C		

Tab. 2.2.2. Actuating mechanism BELIMO BF 24-TN(-ST), BF 230-TN

Actuating mechanism BELIMO	BF 24-TN(-ST)	BF 230-TN	
Nominal voltage	AC 24 V 50/60 Hz DC 24 V	AC 230 V 50/60 Hz	
Power consumption - motoring - holding	7 W 2 W	8 W 3 W	
Dimensioning	10 VA (Imax 8,3 A @ 5 ms)	12,5 VA (Imax 500 mA @ 5 ms)	
Protection class	Ш	II	
Degree of protection	IP	54	
Running time - motor - spring return	120 sec ~ 16 sec		
Ambient Temperature - normal duty - safety duty - non-operating temperature	-30°C … +50°C The safe position will be attained up to max. 75°C -40°C … +50°C		
Connecting - motorcable 1 m, 2 x 0,75 mm²- auxiliary switchcable 1 m, 6 x 0,75 mm²(BF 24-T-ST) with plug-in connectors		6 x 0,75 mm²	
Thermal trips	Tf1: duct outside temperature Duct +72°C Tf2/Tf3: duct intside temperature Duct +72°C		

Design .41, .51

Design .41 or .51 with actuating mechanism can be complemented with smoke detector ORS 142 K. The voltage can be AC 230 V or 24 V DC. Design with voltage AC 230 V is equpped with Communication and supply device BKN 230-24-MOD and with actuating mechanism BF 24-TN (BFL 24-T, BFN 24-T).

The smoke detector is activated when smoke spreads in air duct system. Deactivation of smoke detector is provided by interruption of supply voltage for min. 2s.

Signalisation of damper blade position "OPEN" a "CLOSE" is provided by two limit switches..

Tab. 2.2.3. Optical smoke detector ORS 142 K with the socket 143A

Optical smoke detector	ORS 142 K with socket 143A		
Operating voltage	18 28 V DC		
Residual ripple	≤ 200 mV		
Power Consumption Socket (without actuating mechanism)	max. 22 mA		
Degree of protection	IP 42		
Ambient temperature	-20°C +75°C		
Aditional temperature senzor	+70°C		
Connection - net - motor - communication and supply device BKN	Cabel 1m, connected to terminals 1, 2 and 4 Actuator connected on the terminals 2 and 5 Cabel 1m, connected to terminals 1, 2, 4 and 5		

Fig. 15 Smoke detector ORS 142 K and socket 143A

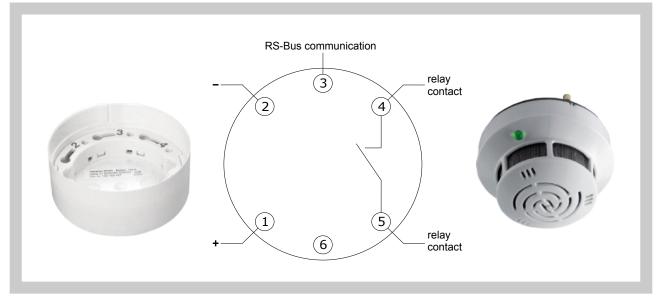


Fig. 16 Design with actuating mechanism BF 24-TN (BFL, BFN 24-T) , with smoke detector ORS 142 K and with communication and supply device BKN 230-24-MOD (voltage AC 230 V)

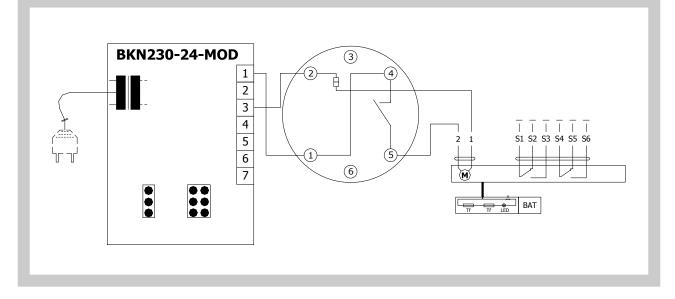
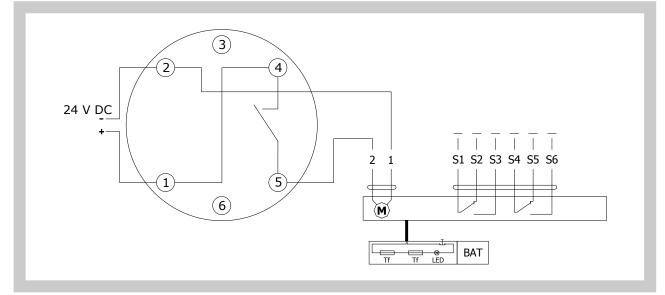
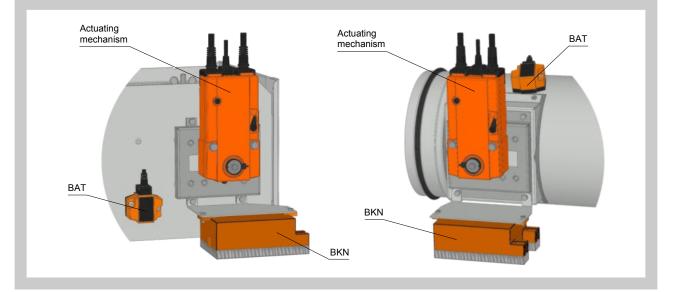



Fig. 17 Design with actuating mechanism BF 24-TN (BFL, BFN 24-T), with smoke detector ORS 142 K (voltage 24 V DC)

2.3. Design with the communication and supply device

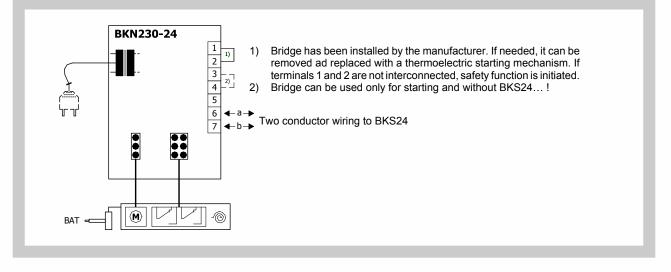
Design .60


Design with the communication and supply device BKN 230-24 and the actuating mechanism BF 24-TN-ST (BFL 24-T, BFN 24-T). It simplifies electrical wiring and interconnection of fire flap valves. It facilitates on site check and enables central control and checks of fire damper by means of a simple 2-conductor wiring.

BKN 230-24 functions as a decentralized network device for supplying the actuating mechanism BF 24-TN-ST (BFL 24-T, BFN 24-T) with a spring back drive on one hand and on the other hand it transmits the signal informing about the flap valve position OPERATION and FAILURE through 2-conductor wiring to the central. Control command SWITCHED ON - SWITCHED OFF from the central through BKN 230-24 goes through the same wiring to the actuating mechanism.

To simplify the connection, the actuating mechanism BF 24-TN-ST (BFL 24-T, BFN 24-T) is equipped with connecting plugs that are inserted directly to BKN 230-24. BKN 230-24 is supplied with a conductor and an EURO plug to be connected to the 230V mains. 2- conductor wiring is connected to BKN 230-24 by means of terminals 6 and 7. If the drive is supposed to be controlled without any signal from the central, it can be switched on by means of a bridge between the terminals 3 and 4. A green LED pilot light on BKN 230-24 is on when voltage is present in the drive (AC 24V).

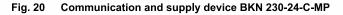
If the button on BAT is switched on or if the power supply (e.g. by a signal from ELECTRICAL FIRE SIGNALISATION) is disconnected, the damper position will be "FAILURE".


Fig. 18 Design with the communication and supply device BKN 230-24, BKN 230-24-C-MP or BKN 230-24-MOD

Tab. 2.3.1. Communication and supply device BKN 230-24

Communication and supply device	BKN 230-24	
Nominal voltage	AC 230 V 50/60Hz	
Power consumption	3,5 W (operating position)	
Dimensioning	11 VA (including actuating mechanism with spring return)	
Protection Class	II	
Degree of protection	IP 40	
Ambient temperature Non-operating temperature	-20°C +50°C -40°C +80°C	
Connection - net - motor - terminal board	cable 0,9 m with EURO plug type 26 6-pole connector, 3-pole connector screw terminals for cable 2x1,5 mm²	

Fig. 19 Communication and supply device BKN 230-24, with act. mechanism BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST)



Design .61

Design .61 with communication and supply device can be complemented with smoke detector ORS 142 K. For supply and comunication is used BKN 230-24-C-MP, which together with the BF 24TN-ST (BFL 24T-ST, BFN 24T-ST) enables central control and checks of fire damper by means of a simple 2-conductor wiring and it also allows connection to the system via MP-BUS communication. More information in the Belimo catalog.

Tab. 2.3.2.	Communication and supply device BKN 230-24-C-MP
-------------	---

Communication and supply device	BKN 230-24-C-MP
Nominal voltage	AC 230 V 50/60Hz
Power consumption	3,5 W (operating position)
Dimensioning	10 VA (including actuating mechanism with spring return)
Protection Class	П
Degree of protection	IP 40
Ambient temperature Non-operating temperature	-20°C +50°C -40°C +80°C
Connection - net - motor - terminal board	cable 0,9 m with EURO plug type 26 6-pole connector, 3-pole connector screw terminals for cable 2x1,5 mm ²

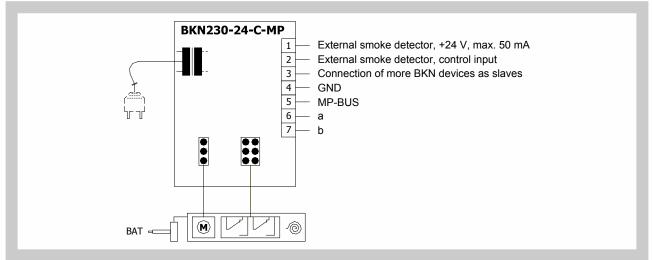
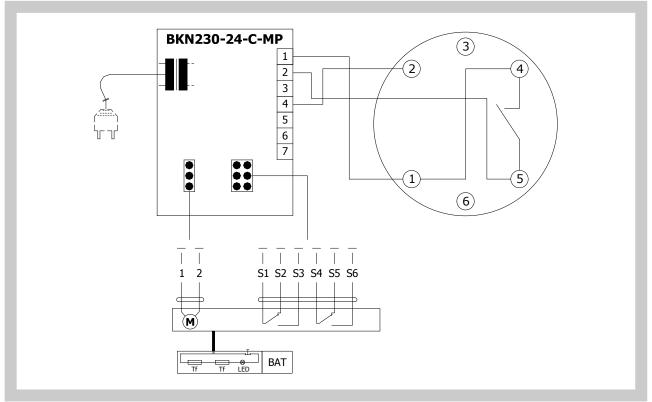



Fig. 21 Design with communication and supply device BKN 230-24-C-MP, with actuating mechanism BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST) with actuating mechanism ORS 142 K

Design .63

Design .60 with communication and supply device can be complemented with smoke detector ORS 142 K. For supply and comunication is used BKN 230-24-MOD, which is used together with the BF 24TN-ST (BFL 24T-ST, BFN 24T-ST) for communication with control systems using the Modbus RTU or BACnet MS / TP protocol. The wiring of the line is to be carried out in accordance with applicable RS485 regulations. Parameterization of the communication is done using DIL switches. The BKN 230-24-MOD can be installed separately, without a connection to a master control system, in which case the connection bridge between the terminals 1 and 4 must be installed. For more information, see the Belimo catalog.

Tab. 2.3.3. Communication and supply device BKN 230-24-MOD

Communication and supply device	BKN 230-24-MOD
Nominal voltage	AC 230 V 50/60Hz
Power consumption	3 W (operating position)
Dimensioning	14 VA (including actuating mechanism with spring return)
Protection Class	Ш
Degree of protection	IP 40
Ambient temperature Non-operating temperature	-20°C +50°C -40°C +80°C
Connection - net - motor - terminal board	cable 0,9 m with EURO plug type 26 6-pole connector, 3-pole connector screw terminals for cable 2x1,5 mm ²

Fig. 22 Communication and supply device BKN 230-24-MOD, with act. mechanism BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST)

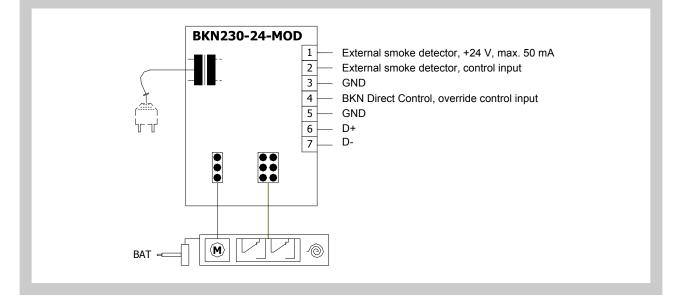
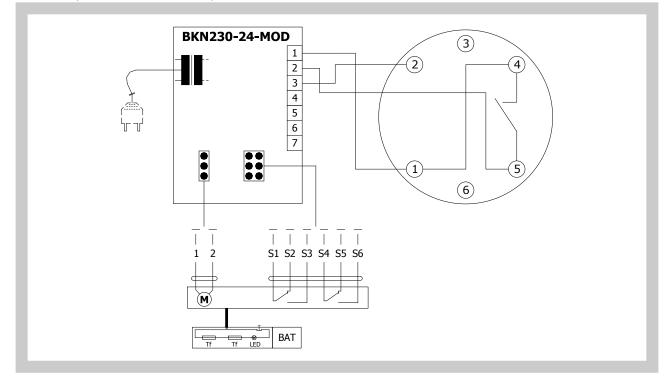
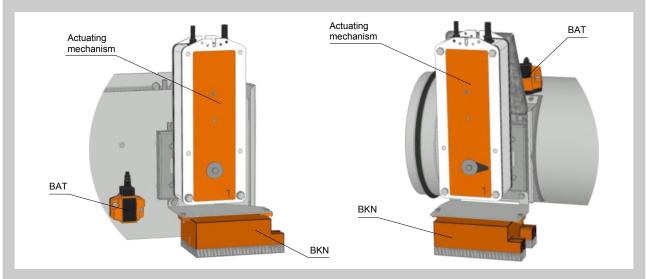



Fig. 23 Design with communication and supply device BKN 230-24-MOD, with actuating mechanism BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST) and smoke detector ORS 142 K

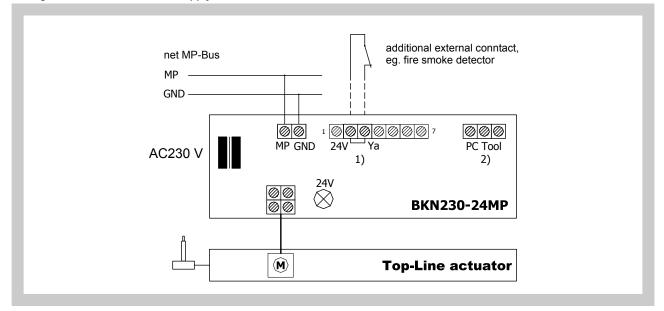
Design .62


Design with the communication and supply device BKN 230-24MP and actuating mechanism BF 24TL-TN-ST for connection to MP-Bus. BKN 230-24MP supplies to intelligent actuating mechanisms of fire dampers BF 24TL-TN-ST decentrally needed power supply. In this way can be realize long MP-Bus communications (up to 800 m). Up to 8 Bus nodes can be parallel connected and controlled by Master device (DDC with interface). More information in Belimo catalogue.

Design .64

Design with the communication and supply device BKN 230-24LON and actuating mechanisms of fire dampers BF 24TL-TN-ST for cooperation with control units based on technology LonWorks. BKN 230-24LON complements actuating mechanism for integrated safety function and converts digital protocol MP from actuating mechanism to LonTalk and back. More information in Belimo catalogue.

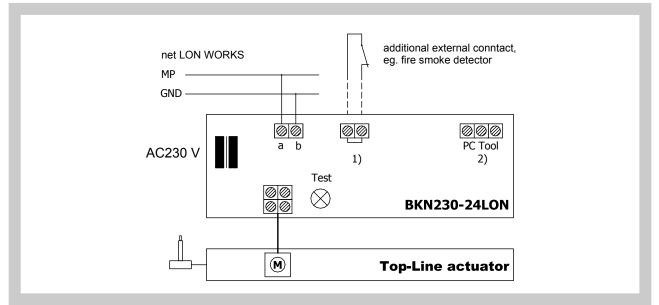
Fig. 24 Design with communication and supply device BKN 230-24MP or BKN 230-24LON and actuationg mechanism BF 24TL-TN-ST


Tab. 2.3.4. Actuating mechanism BELIMO BF 24TL-TN-ST

Actuating mechanism BELIMO	BF 24TL-TN-ST
Nominal voltage	AC 24 V 50/60Hz DC 24 V
Power consumption - motoring - holding	7 W 2 W
Dimensioning	10 VA (Imax 8,3 A @ 5 ms)
Protection class	III
Degree of protection	IP 54
Running time - motor - spring return	120 sec ~ 16 sec
Ambient temperature Non-operating temperature	-30°C +50°C -40°C +50°C
Connection	Connector for BKN 230-24LON and BKN 230-24MP cable 1 m, 4 x 0,75 mm ² halogen-free

Tab. 2.3.5. Communication and supply device BKN 230-24MP

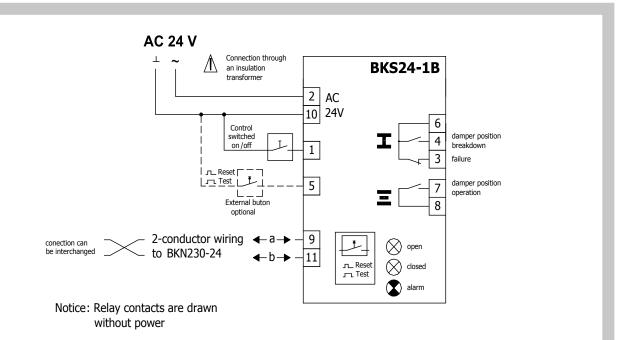
Communication and supply device	BKN 230-24MP	
Nominal voltage	AC 230 V 50/60Hz	
Power consumption	11 W (including actuator mechanism)	
Dimensioning	13 VA (including actuator mechanism)	
Protection Class	Ш	
Degree of protection	IP 40	
Ambient temperature Non-operating temperature	-30°C +50°C -40°C +80°C	
Connection - net - motor (BFTop) - net MP - starting mechanism (volitelné) - Top-Line PC-Tool (via ZIP-RS232)	cable 1m, with EURO plug 4-pole connector screw terminal 2-pole screw terminal 2-pole 3-pole connector	


Fig. 25 Communication and supply device BKN 230-24MP

Tab. 2.3.6. Communication and supply device BKN 230-24LON

Communication and supply device	BKN 230-24LON	
Nominal voltage	AC 230 V 50/60Hz	
Power consumption	14 W (including actuating mechanism)	
Dimensioning	16 VA (including actuating mechanism)	
Protection Class	II	
Degree of protection	IP 40	
Ambient temperature Non-operating temperature	-30°C +50°C -40°C +80°C	
Connection - net - actuator (BFTop) - net LonWorks - starting mechanism (optional) - Top-Line PC-Tool (via ZIP-RS232)	cable 1m, with Euro plug 4-pole connector screw terminal 2-pole screw terminal 2-pole 3-pole connector	

Fig. 26 Communication and supply device BKN 230-24LON



3. Communication and control devices

3.1. BKS 24-1B communication and control device is used for control and checks of fire dampers with the BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST) actuating mechanism in conjunction with the BKN 230-24 supply and communication device. BKS 24-1B receives information about the situation of the fire damper through the BKN 230-24 supply and communication device and issues controlling commands. The device is intended for building in into the distribution board. Light diodes on the front side of the device signalise the operating situations of the damper and breakdowns of the whole system. Potentialless auxiliary contacts enable connection to the master control system (signaling of the damper position, failure reports, release of the ventilators etc.). While a flashing green LED pilot light signalises damper blade motion towards the given position, the same pilot light reports reaching the required position when shining constantly. If the flap blade, with respect to the given time, does not reach the required position, then a red LED pilot light starts to flash and at the same time, the failure contact is active. Once the damper blade reaches the given position, this contact is deactivated. The LED pilot light keeps flashing unless the failure is unblocked by means of the RESET button. Except for reporting failures, other three auxiliary contacts are available. Contacts showing operating and failure position of the damper are active when the damper is in the given position. Function check can be done by pressing and holding the button "RESET/TEST" for longer time. While holding the button, the damper blade moves in the direction of the failure position. Fault function is indicated by the LED pilot light.

BKS 24-1B can be connected by means of ZSO-11 11 pole connector for DIN 35 mm panel.

Fig. 27 Communication and control device BKS 24-1B

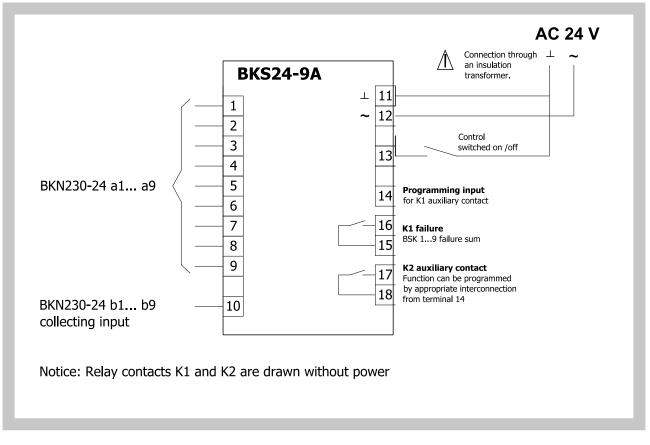
Signals and diagnosis				
light diodes contacts		contacts	Description	
⊗ open	⊗ closed	alarm	state	Cause/Course
⊗ closed	\otimes closed	Closed 2	6-43	Power supply AC 24Vnot available
-🔆 open	-🔆 open	🔆 open	6	Check test cca 35sec, starting with switching AC 24 on or pressing «Reset/Test» button
⊗ closed	⊗ closed	·☆ flashing	63	Current failure , possible cause: • short circuit or interruption of 2-conductor wiring or damper failure (at BKN) • Power supply AC 230V missing • defective thermoelectrical starting • smoke detector activated • exceeded operation time • damper blocked
⊗closed	⊗ closed	🔆 open	63	Failure saved in memory • Fault in system signalled, system check should be done
\otimes closed	-flashing	Closed 3	6	Damper (drive) turning into the direction of breakdown position
\otimes closed	-☆ open	Closed	6-4	Damper (drive) in breakdown position I
· 🔆 flashing	\otimes closed	Closed	67	Damper (drive) turning into the direction of operating position
🔆 open	\otimes closed	Closed 3	6-4-7	Damper (drive) in operating position

Tab. 3.1.1. Communication and control device BKS 24-1B

Communication and control device	BKS 24-1B
Nominal voltage	AC 24 V 50/60Hz
Power consumption	2,5 W (operating position)
Dimensioning	5 VA
Protection Class	III
Degree of protection	IP 30
Ambient temperature	0 +50°C
Connection	11-pole connector ZSO-11, it is not part of BKS24-1B, ZSO-11 is 11-pole screw terminal 11 x 1,5 mm²

3.2. BKS 24-9A communication and control device is used for group control and checks of 1 to 9 fire dampers with the actuating mechanism BF 24-TN-ST (BFL 24-T-ST, BFN 24-T-ST) in connection with the supply and communication device BKN 230-24. Signalisation of the damper position is individual; the damper can be controlled and tested only as a group. BKS 24-9A is intended for use in the distribution board and displays the operation situations and failure reports of the connected fire dampers. It is possible to signalise functions such as the damper position and failure reports or to transmit them further to the system by means of integrated auxiliary switches. BKS 24-9A receives signals from BKN 230-24 through the two-conductor wiring and issues control commands. Proper damper operation is indicated by two light LED diodes:

Control ON = position OPERATION Control OFF = position FAILURE

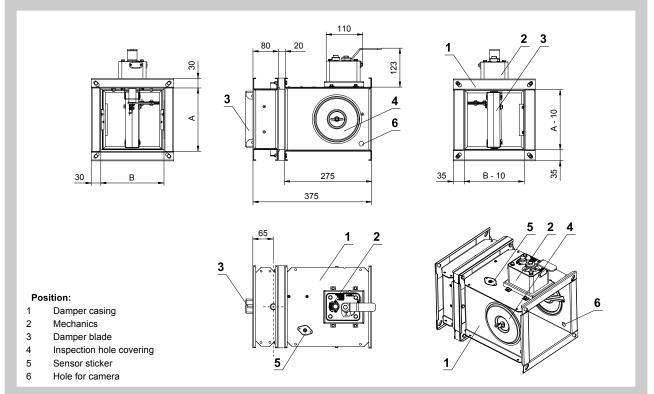

If the fire damper do not reach the given position in time tolerable for displacing, the appropriate light diode FAILURE starts to flash and K1 contact is opened (current failure). In case that the faulty damper finally reaches its given position, K1 is closed and the failure report light shines (the failure is saved in memory). K2 - the auxiliary contact - is used for signaling of the flap position to the master device. Function of this auxiliary contact can be programmed through the terminal 14 according to the Tab. 3.2.1.

Tab. 3.2.1. BKS 24 -9A contacts K1 and K2

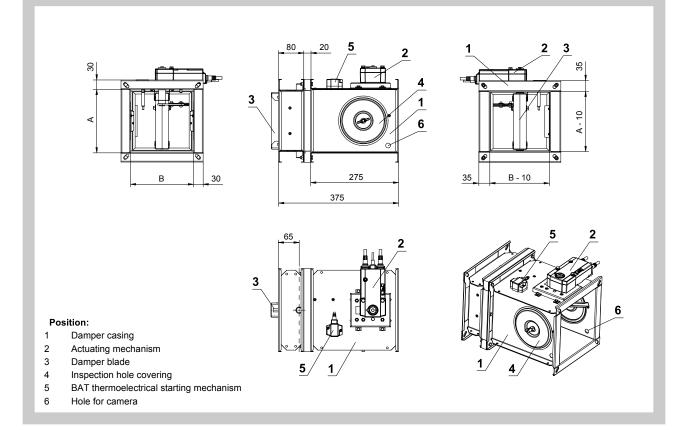
Function	contact K1	Programming K2 Auxiliary Contact							
situation	state	function	interconnection	state					
		K2 contact is on if all the flaps are open	1411						
current failure	15 — 16	K2 contact is on if the flap No. 1 is open	14 12	17					
no failure	15	K2 contact is on if all the flaps are closed	14 open						

Function check can be done in the position OPERATION by means of pushing the TEST button. While the button is pushed, the flap blade is turning into the position FAILURE. Fault function is indicated by a report "FAILURE". Assembly and connection BKS 24 - 9A can be made by DIN 35 mm panel. It is connected by two 9-pole plug-in connectors.

Fig. 28 Communication and control device BKS 24-9A


Communication and control device	BKS 24-9A							
Nominal voltage	AC 24 V 50/60Hz							
Power consumption	3,5 W							
Dimensioning	5,5 VA							
Protection Class	III							
Degree of protection	IP 30							
Ambient temperature	0 +50°C							
Connection	terminal 2 x 1,5 mm ²							

Tab. 3.2.2.	Communication and control device BKS 24-9A


4. Dimensions, weights and effective area

4.1. Rectangular dampers

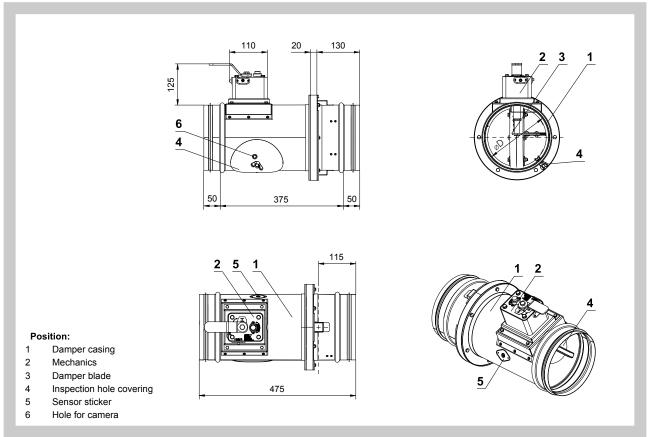
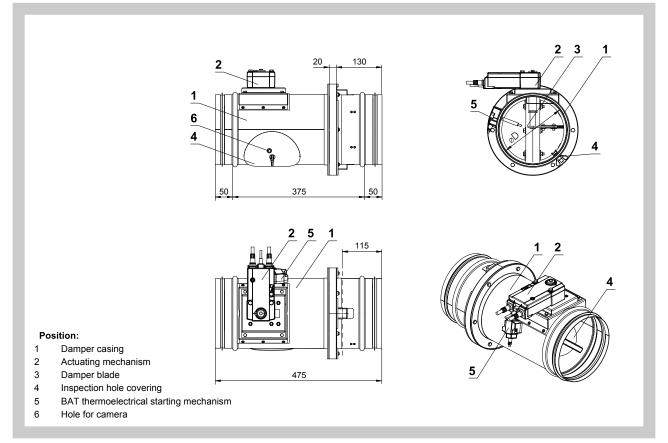


Fig. 30 FDMA PM with actuating mechanism - rectangular



4.2. Round dampers

Fig. 31 FDMA PM - with mechanical control - round

Fig. 32 FDMA PM with actuating mechanism - round

4.3. Rectangular dampers - dimensions, weights and effective area

Tab. 4.3.1. Rectangular dampers - dimensions, weights and effective area

		1			ľ									1	
			We	ight	Effect.						Wei	ight	Effect.		_
AxB	а	с	Des	sign	area	Actu.	Mech.	AxB	а	с	Des	sign	area	Actu.	Mech.
[mm]	[mm]	[mm]	mech	servo	Sef [m ²]	mech.	contr.	[mm]	[mm]	[mm]	mech	servo	Sef [m ²]	mech.	contr.
			[kg]	[kg]							[kg]	[kg]			
180 x 180	-	13	9,0	10,5	0,0178	BFL	M1	225 x 600	-	223	19,0	20,5	0,1070	BFL	M2
x 200	-	23	9,5	11,0	0,0209	BFL	M1	x 630	-	238	19,5	21,0	0,1130	BFN	M2
x 225	-	36	10,0	11,5	0,0248	BFL	M1	x 650	3	248	20,0	21,5	0,1170	BFN	M2
x 250	-	48	10,5	12,0	0,0287	BFL	M1	x 700	28	273	21,0	22,5	0,1270	BFN	M2
x 280	-	63	11,0	12,5	0,0333	BFL	M1	x 710	33	278	21,0	22,5	0,1290	BFN	M2
x 300	-	73	11,5	13,0	0,0364	BFL	M1	x 750	53	298	22,0	23,5	0,1370	BFN	M3
x 315	-	80,5	12,0	13,5	0,0388	BFL	M1	x 800	78	323	23,0	24,5	0,1470	BFN	M3
x 355	-	100,5	13,0	14,5	0,0450	BFL	M1	250 x 180	-	13	10,5	12,0	0,0259	BFL	M1
x 400	-	123	14,0	15,5	0,0519	BFL	M1	x 200	-	23	10,5	12,5	0,0304	BFL	M1
x 450	-	148	15,0	16,5	0,0597	BFL	M1	x 225	-	36	11,0	13,0	0,0360	BFL	M1
x 500	-	173	16,0	17,5	0,0674	BFL	M2	x 250	-	48	12,0	13,5	0,0416	BFL	M1
x 550	-	198	17,0	18,5	0,0752	BFL	M2	x 280	-	63	13,0	14,5	0,0484	BFL	M1
x 560	-	203	17,0	18,5	0,0767	BFL	M2	x 300	-	73	13,0	15,0	0,0529	BFL	M1
x 600	-	223	18,0	19,5	0,0829	BFL	M2	x 315	-	80,5	13,5	15,0	0,0563	BFL	M1
x 630	-	238	18,5	20,0	0,0876	BFL	M2	x 355	-	100,5	14,5	16,0	0,0653	BFL	M1
x 650	3	248	19,0	20,5	0,0907	BFL	M2	x 400	-	123	15,5	17,0	0,0754	BFL	M1
x 700 x 710	28	273	20,0	21,5	0,0984	BFN	M2	x 450 x 500	-	148	16,5	19,5	0,0866	BFL	M1 M2
x 710	33 53	278 298	20,0 21,0	21,5 22,5	0,1000	BFN BFN	M2 M2	x 500 x 550	-	173 198	18,0 19,0	21,0 22,0	0,0979 0,1091	BFL BFL	M2
	53 78		,	,	,				-		,		,		M2
x 800 200 x 180	-	323 13	22,0 9,5	23,5 11,0	0,1139	BFN BFL	M2 M1	x 560 x 600	-	203 223	19,0 20,0	22,0 23,0	0,1114 0,1204	BFL BFN	M2
200 x 180 x 200	-	23	9,5	11,0	0,0201	BFL	M1	x 600	-	223	20,0	23,0	0,1204	BFN	M2
x 200	-	23 36	10,0	13,5	0,0236	BFL	M1	x 630 x 650	- 3	230	21,0	24,0 24,5	0,1271	BFN	M2
x 223	-	48	11,0	12,5	0,0280	BFL	M1	x 700	28	240	21,5	24,5	0,1310	BFN	M2
x 230	-	63	11,5	14,5	0,0324	BFL	M1	x 700	33	273	22,5	26,0	0,1429	BFN	M2
x 300	-	73	12,0	14,5	0,0370	BFL	M1	x 750	53	298	23,0	26,5	0,1431	BFN	M3
x 315	-	80,5	12,0	14,0	0,0411	BFL	M1	x 730	78	323	25,5	28,0	0,1654	BFN	M3
x 355	-	100,5	13,0	15,0	0,0508	BFL	M1	280 x 180	-	13	11,0	12,5	0,0293	BFL	M1
x 400	-	123	14,0	16,0	0.0586	BFL	M1	x 200 x 100	-	23	11,5	13,5	0,0200	BFL	M1
x 450	-	148	15,0	18,0	0.0674	BFL	M1	x 200	-	36	12,0	14,0	0,0408	BFL	M1
x 500	-	173	16,5	18,0	0.0761	BFL	M2	x 250	-	48	13,0	14,5	0.0472	BFL	M1
x 550	-	198	17,5	20,5	0.0849	BFL	M2	x 280	-	63	14,0	15,5	0,0548	BFL	M1
x 560	-	203	17,5		0,0866	BFL	M2	x 200	-	73	14,0		0,0599	BFL	M1
x 600	-	223	18,5	23,0	0,0936	BFL	M2	x 315	-	80,5	14,5	16,5	0,0638	BFL	M1
x 630	-	238	19,0	22,0	0,0989	BFL	M2	x 355	-	100,5		17,5	0,0740	BFL	M1
x 650	3	248	19,5	22,5	0,1024	BFL	M2	x 400	-	123	17,0	18,5	0,0854	BFL	M1
x 700	28	273	20,5	25,0	0,1111	BFN	M2	x 450	-	148	18,0	21,0	0,0982	BFL	M1
x 710	33	278	21,0	24,0	0,1129	BFN	M2	x 500	-	173	19,5	22,5	0,1109	BFL	M2
x 750	53	298	21,5	24,5	0,1199	BFN	M2	x 550	-	198	20,5	23,5	0,1237	BFL	M2
x 800	78	323	23,0	26,0	0,1286	BFN	M2	x 560	-	203	21,0	24,0	0,1262	BFN	M2
225 x 180	-	13	10,0	11,5	0,0230	BFL	M1	x 600	-	223	22,0	25,0	0,1364	BFN	M2
x 200	-	23	10,5	12,0	0,0270	BFL	M1	x 630	-	238	22,5	25,5	0,1441	BFN	M2
x 225	-	36	11,0	12,5	0,0320	BFL	M1	x 650	3	248	23,0	26,0	0,1492	BFN	M2
x 250	-	48	11,5	13,0	0,0370	BFL	M1	x 700	28	273	24,5	27,5	0,1619	BFN	M2
x 280	-	63	12,0	13,5	0,0430	BFL	M1	x 710	33	278	24,5	27,5	0,1645	BFN	M2
x 300	-	73	12,5	14,0	0,0470	BFL	M1	x 750	53	298	25,5	28,5	0,1747	BFN	M3
x 315	-	80,5	13,0	14,5	0,0500	BFL	M1	x 800	78	323	27,0	30,0	0,1874	BFN	M3
x 355	-	100,5	14,0	15,5	0,0580	BFL	M1	300 x 180	-	13	11,5	13,0	0,0316	BFL	M1
x 400	-	123	15,0	16,5	0,0670	BFL	M1	x 200	-	23	11,5	13,5	0,0371	BFL	M1
x 450	-	148	16,0	17,5	0,0770	BFL	M1	x 225	-	36	12,0	14,0	0,0440	BFL	M1
x 500	-	173	17,0	18,5	0,0870	BFL	M2	x 250	-	48	13,0	14,5	0,0509	BFL	M1
x 550	-	198	18,0	19,5	0,0970	BFL	M2	x 280	-	63	14,0	15,5	0,0591	BFL	M1
x 560	-	203	18,0	19,5	0,0990	BFL	M2	x 300	-	73	14,0	16,0	0,0646	BFL	M1

											_				
			Wei	ight	Effect.							ight	Effect.		
AxB	a.	, c	Des	sign	area	Actu.	Mech.	AxB	a.	, c	Des	sign	area	Actu.	Mech.
[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m²]	mech.	contr.	[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m²]	mech.	contr.
300 x 315	-	80,5	14,5	16,5	0,0688	BFL	M1	400 x 180	-	13	13,5	15,5	0,0431	BFL	M1
x 355	-	100,5	15,5	17,5	0,0798	BFL	M1	x 200	-	23	14,0	15,5	0,0506	BFL	M1
x 400	1	123	17,0	18,5	0,0921	BFL	M1	x 225	1	36	14,5	16,5	0,0600	BFL	M1
x 450	-	148	18,0	21,0	0,1059	BFL	M1	x 250	-	48	15,0	17,0	0,0694	BFL	M1
x 500	-	173	19,5	22,5	0,1196	BFL	M2	x 280	-	63	16,0	18,0	0,0806	BFL	M1
x 550	-	198	20,5	23,5	0,1334	BFN	M2	x 300	-	73	16,5	18,0	0,0881	BFL	M1
x 560	-	203	21,0	24,0	0,1361	BFN	M2	x 315	-	80,5	17,0	18,5	0,0938	BFL	M1
x 600	-	223	22,0	25,0	0,1471	BFN	M2	x 355	-	100,5	18,0	20,0	0,1088	BFL	M1
x 630	-	238	22,5	25,5	0,1554	BFN	M2	x 400	-	123	19,5	21,0	0,1256	BFL	M1
x 650	3	248	23,0	26,0	0,1609	BFN	M2	x 450	-	148	21,0	24,0	0,1444	BFL	M1
x 700	28	273	24,5	27,5	0,1746	BFN	M2	x 500	-	173	22,5	25,5	0,1631	BFN	M2
x 710	33	278	24,5	27,5	0,1774	BFN	M2	x 550	-	198	23,5	26,5	0,1819	BFN	M2
x 750	53	298	25,5	28,5	0,1884	BFN	M3	x 560	-	203	24,0	27,0	0,1856	BFN	M2
x 800	78	323	27,0	30,0	0,2021	BFN	M3	x 600	-	223	25,5	28,5	0,2006	BFN	M2
315 x 180	-	13	12,0	13,5	0,0334	BFL	M1	x 630	-	238	26,0	29,0	0,2119	BFN	M2
x 200	-	23	12,0	13,5	0,0392	BFL	M1	x 650	3	248	26,5	29,5	0,2194	BFN	M2
x 225	-	36	12,5	14,0	0,0464	BFL	M1	x 700	28	273	28,0	31,5	0,2381	BFN	M2
x 250	-	48	13,5	15,0	0,0537	BFL	M1	x 710	33	278	28,5	31,5	0,2419	BFN	M2
x 280	-	63	14,5	16,0	0,0624	BFL	M1	x 750	53	298	29,5	32,5	0,2569	BF	M3
x 300	-	73	14,5	16,5	0,0682	BFL	M1	x 800	78	323	31,0	34,0	0,2756	BF	M3
x 315	-	80,5	15,0	16,5	0,0725	BFL	M1	450 x 180	-	13	14,5	16,5	0,0489	BFL	M1
x 355	-	100,5	16,0	17,5	0,0841	BFL	M1	x 200	-	23	15,0	16,5	0,0574	BFL	M1
x 400	-	123	17,0	19,0	0,0972	BFL	M1	x 225	-	36	15,5	17,5	0,0680	BFL	M1
x 450	-	148	18,5	21,5	0,1117	BFL	M1	x 250	-	48	16,0	18,0	0,0786	BFL	M1
x 500	-	173	19,5	22,5	0,1262	BFL	M2	x 280	-	63	17,0	19,0	0,0914	BFL	M1
x 550	-	198	21,0	24,0	0,1407	BFN	M2	x 300	-	73	17,5	19,5	0,0999	BFL	M1
x 560	-	203	21,5	24,5	0,1436	BFN	M2	x 315	-	80,5	18,0	20,0	0,1063	BFL	M1
x 600	-	223 238	22,5	25,5	0,1639	BFN	M2 M2	x 355 x 400	-	100,5 123	19,5	21,0	0,1233	BFL	M1
x 630 x 650	- 3	230	23,0 23,5	26,0 26,5	0,1697 0,1712	BFN BFN	M2	x 400 x 450	-	123	20,5 22,0	22,5 25,0	0,1424	BFL BFN	M1 M2
x 700	28	240	25,5	28,0	0,1712	BFN	M2	x 450 x 500	-	140	22,0	25,0	0,1849	BFN	M2
x 700	33				0,1871		M2	x 500	-				0,1849		M2
x 710	53	298	26,0	20,0	0,1987	BFN	M3	x 550	-	203	25,5	28,5	0,2001	BFN	M2
x 730	78	323	20,0	30,5	0,1987	BFN	M3	x 600	-	203	25,5	30,0	0,2274	BFN	M2
355 x 180	-	13	13,0	14,5	0,0380	BFL	M1	x 630	-	238	27,5	30,5	0,2401	BFN	M2
x 200	-	23	13,0	14,5	0,0446	BFL	M1	x 650	3	248	28,5	31,5	0,2486	BFN	M2
x 200	-	36	13,5	15,0	0,0528	BFL	M1	x 700	28	273	30,0	33,0	0,2699	BF	M2
x 250	-	48	14,0	16,0	0,0611	BFL	M1	x 700	33	278	30,0	33,0	0,2741	BF	M2
x 280	-	63	15,0	17,0	0,0710	BFL	M1	x 750	53	298	31,5	34,5	0,2911	BF	M3
x 300	-	73	15,5	17,0	0,0776	BFL	M1	x 800	78	323	33,0	36,0	0,3124	BF	M3
x 315	-	80,5	16,0	17,5	0,0825	BFL	M1	500 x 180	-	13	15,5	17,0	0,0546	BFL	M1
x 355	-	100,5	17,0	18,5	0,0957	BFL	M1	x 200	-	23	16,0	17,5	0,0641	BFL	M1
x 400	-	123	18,0	20,0	0,1106	BFL	M1	x 225	-	36	16,5	18,0	0,0760	BFL	M1
x 450	-	148	19,5	22,5	0,1271	BFL	M1	x 250	-	48	17,0	19,0	0,0879	BFL	M1
x 500	-	173	21,0	24,0	0,1436	BFN	M2	x 280	-	63	18,0	20,0	0,1021	BFL	M1
x 550	-	198	22,5	25,5	0,1601	BFN	M2	x 300	-	73	19,0	20,5	0,1116	BFL	M1
x 560	-	203	22,5	25,5	0,1634	BFN	M2	x 315	-	80,5	19,5	21,0	0,1188	BFL	M1
x 600	-	223	23,5	26,5	0,1766	BFN	M2	x 355	-	100,5	20,5	22,5	0,1378	BFL	M1
x 630	-	238	24,5	27,5	0,1865	BFN	M2	x 400	-	123	22,0	23,5	0,1591	BFL	M2
x 650	3	248	25,0	28,0	0,1931	BFN	M2	x 450	-	148	23,5	26,5	0,1829	BFN	M2
x 700	28	273	26,5	29,5	0,2096	BFN	M2	x 500	-	173	25,5	28,5	0,2066	BFN	M2
x 710	33	278	26,5	29,0	0,2129	BFN	M2	x 550	-	198	27,0	30,0	0,2304	BFN	M2
x 750	53	298	27,5	30,5	0,2261	BFN	M3	x 560	-	203	27,0	30,0	0,2351	BFN	M2
x 800	78	323	29,0	32,0	0,2426	BF	M3	x 600	-	223	28,5	31,5	0,2541	BFN	M2

			Wei	ight							We	ight			
A x B	а	с	Des	sign	Effect. area	Actu.	Mech.	AxB	а	с	Des	sign	Effect. area	Actu.	Mech.
[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m ²]	mech.	contr.	[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m ²]	mech.	contr.
500 x 630	-	238	29,5	32,5	0,2684	BFN	M2	600 x 400	-	123	24,5	27,5	0,1926	BFN	M2
x 650	3	248	30,0	33,0	0,2779	BF	M2	x 450	-	148	26,5	29,5	0,2214	BFN	M2
x 700	28	273	32,0	35,0	0,3016	BF	M2	x 500	-	173	28,5	31,5	0,2501	BFN	M2
x 710	33	278	32,0	35,0	0,3064	BF	M2	x 550	-	198	30,0	33,0	0,2789	BFN	M2
x 750	53	298	33,5	36,5	0,3254	BF	M3	x 560	-	203	30,5	33,5	0,2846	BFN	M2
x 800	78	323	35,0	38,0	0,3491	BF	M3	x 600	-	223	32,0	35,0	0,3076	BF	M2
550 x 180	-	13	16,5	18,0	0,0604	BFL	M1	x 630	-	238	33,0	36,0	0,3249	BF	M2
x 200	-	23	17,0	18,5	0,0709	BFL	M1	x 650	3	248	33,5	36,5	0,3364	BF	M2
x 225	-	36	17,5	19,0	0,0840	BFL	M1	x 700	28	273	35,5	38,5	0,3651	BF	M2
x 250	-	48	18,0	20,0	0,0971	BFL	M1	x 710	33	278	36,0	39,0	0,3709	BF	M2
x 280	-	63	19,0	21,0	0,1129	BFL	M1	x 750	53	298	37,5	40,5	0,3939	BF	M3
x 300	-	73	20,0	21,5	0,1234	BFL	M1	x 800	78	323	39,0	42,0	0,4226	BF	M3
x 315	-	80,5	20,5	22,0	0,1313	BFL	M1	630 x 180	-	13	18,0	20,0	0,0696	BFL	M1
x 355	-	100,5	22,0	23,5	0,1523	BFL	M1	x 200	-	23	18,5	21,0	0,0817	BFL	M1
x 400	-	123	23,5	25,0	0,1759	BFN	M2	x 225	-	36	19,0	22,0	0,0968	BFL	M1
x 450	-	148	25,0	28,0	0,2021	BFN	M2	x 250	-	48	20,0	23,0	0,1119	BFL	M1
x 500	-	173	27,0	30,0	0,2284	BFN	M2	x 280	-	63	21,0	24,0	0,1301	BFL	M1
x 550	-	198	28,5	31,5	0,2546	BFN	M2	x 300	-	73	21,5	24,5	0,1422	BFL	M1
x 560	-	203	29,0	32,0	0,2599	BFN	M2	x 315	-	80,5	22,5	25,5	0,1513	BFL	M1
x 600	-	223	30,5	33,5	0,2809	BFN	M2	x 355	-	100,5	24,0	27,0	0,1755	BFL	M2
x 630	-	238	31,0	34,0	0,2966	BF	M2	x 400	-	123	25,5	28,5	0,2027	BFN	M2
x 650	3	248	32,0	35,0	0,3071	BF	M2	x 450	-	148	27,5	30,5	0,2329	BFN	M2
x 700	28	273	34,0	37,0	0,3334	BF	M2	x 500	-	173	29,0	32,0	0,2632	BFN	M2
x 710	33	278	34,0	37,0	0,3386	BF	M2	x 550	-	198	31,0	34,0	0,2934	BFN	M2
x 750	53	298	35,5	38,5	0,3596	BF	M3	x 560	-	203	31,5	34,5	0,2995	BFN	M2
x 800	78	323	37,0	40,0	0,3859	BF	M3	x 600	-	223	33,0	36,0	0,3237	BF	M2
560 x 180	-	13	16,5	18,5	0,0615	BFL	M1	x 630	-	238	34,0	37,0	0,3418	BF	M2
x 200	-	23	17,0	18,5	0,0722	BFL	M1	x 650	3	248	34,5	37,5	0,3539	BF	M2
x 225 x 250	-	36 48	17,5	19,5 20,0	0,0856 0,0990	BFL BFL	M1 M1	x 700 x 710	28 33	273	36,5	39,5 40,0	0,3842 0,3902	BF BF	M2 M2
x 230	-	40 63	18,5 19,5	20,0	0,0990	BFL	M1	x 710	53	278 298	37,0 38,5	40,0	0,3902	BF	M3
x 280	-	73	20,0	21,0	0,1150	BFL	M1	x 730	78	323	40,5	41,5	0,4144	BF	M3
x 300 x 315	-	80,5	20,0	22,0	0,1237	BFL	M1	650 x 180	-	13	40,5	43,5 20,5	0,4447	BFL	M1
x 315	-	100,5		22,5	0,1552	BFL	M1	x 200	-	23	20,0	20,5	0,0719	BFL	M1
x 400	-	123	23,5	25,5	0,1332	BFN	M2	x 200	-	36	20,0	21,5	0,0044	BFL	M1
x 450	-	148	25,5	28,5	0,2060	BFN	M2	x 250	-	48	21,0	23,5	0,1156	BFL	M1
x 500	-	173	27,0	30,0	0,2327	BFN	M2	x 230	-	63	23,0	23,5	0,1344	BFL	M1
x 550	-	198	29,0	32,0	0,2595	BFN	M2	x 300	-	73	23,0	24,5	0,1344	BFL	M1
x 560	-	203	29,5	32,5	0,2648	BFN	M2	x 300	-	80,5	24,5	26,0	0,1563	BFL	M2
x 600	-	223	31,0	34,0	0,2862	BFN	M2	x 355	-	100,5	-	27,5	0,1813	BFL	M2
x 630	-	238	31,5	34,5	0,3023	BF	M2	x 400	-	123	28,0	29,5	0,2094	BFN	M2
x 650	3	248	32,0	35,0	0,3130	BF	M2	x 450	-	148	30,0	31,5	0,2406	BFN	M2
x 700	28	273	34,0	37,0	0,3397	BF	M2	x 500	-	173	32,0	33,5	0,2719	BFN	M2
x 710	33	278	34,5	37,5	0,3451	BF	M2	x 550	-	198	34,0	35,5	0,3031	BFN	M2
x 750	53	298	35,5	38,5	0,3665	BF	M3	x 560	-	203	34,5	37,5	0,3094	BF	M2
x 800	78	323	37,5	40,5	0,3932	BF	M3	x 600	-	223	36,0	39,0	0,3344	BF	M2
600 x 180	-	13	17,5	19,5	0,0661	BFL	M1	x 630	-	238	37,0	40,0	0,3531	BF	M2
x 200	-	23	18,0	20,5	0,0776	BFL	M1	x 650	3	248	38,0	41,0	0,3656	BF	M2
x 225	-	36	18,5	21,5	0,0920	BFL	M1	x 700	28	273	40,0	43,0	0,3969	BF	M2
x 250	-	48	19,0	22,0	0,1064	BFL	M1	x 710	33	278	40,5	43,5	0,4031	BF	M2
x 280	-	63	20,0	23,0	0,1236	BFL	M1	x 750	53	298	42,0	45,0	0,4281	BF	M3
x 300	-	73	21,0	24,0	0,1351	BFL	M1	x 800	78	323	44,0	47,0	0,4594	BF	M3
x 315	-	80,5	21,5	24,5	0,1438	BFL	M1	700 x 180	-	13	20,0	21,5	0,0776	BFL	M1
x 355	-	100,5	23,0	26,0	0,1668	BFL	M2	x 200	-	23	21,0	22,5	0,0911	BFL	M1

		I			ľ					1			ľ		
			Wei	ight	Effect.						Wei	ght	Effect.		
AxB	а	С	Des	sign	area	Actu.		A x B	а	С	Des	ign	area	Actu.	Mech.
[mm]	[mm]	[mm]	mech	servo	Sef [m ²]	mech.	contr.	[mm]	[mm]	[mm]		servo	Sef [m ²]	mech.	contr.
			[kg]	[kg]							[kg]	[kg]			
700 x 225	-	36	22,0	23,5	0,1080	BFL	M1	750 x 700	28	273	41,5	44,5	0,4604	BF	M3
x 250	-	48	23,0	24,5	0,1249	BFL	M1	x 710	33	278	41,5	44,5	0,4676	BF	M3
x 280	-	63	24,5	26,0	0,1451	BFL	M1	x 750	53	298	43,0	46,0	0,4966	BF	M3
x 300	-	73	25,5	27,0	0,1586	BFL	M2	x 800	78	323	45,0	48,0	0,5329	BF	M3
x 315	-	80,5	26,0	27,5	0,1688	BFL	M2	800 x 180	-	13	22,0	23,5	0,0891	BFL	M1
x 355	-	100,5	27,5	29,0	0,1958	BFN	M2	x 200	-	23	23,0	24,5	0,1046	BFL	M1
x 400	-	123	29,5	31,0	0,2261	BFN	M2	x 225	-	36	23,5	25,5	0,1240	BFL	M1
x 450	-	148	31,5	33,0	0,2599	BFN	M2	x 250	-	48	24,0	26,5	0,1434	BFL	M2
x 500	-	173	33,5	35,0	0,2936	BFN	M2	x 280	-	63	25,0	28,0	0,1666	BFL	M2
x 550	-	198	35,5	38,5	0,3274	BF	M2	x 300	-	73	25,5	28,5	0,1821	BFL	M2
x 560	-	203	36,0	39,0	0,3341	BF	M2	x 315	-	80,5	26,5	29,5	0,1938	BFL	M2
x 600	-	223	37,5	40,5	0,3611	BF	M2	x 355	-	100,5	28,0	31,0	0,2248	BFN	M2
x 630	-	238	39,0	42,0	0,3814	BF	M2	x 400	-	123	30,0	33,0	0,2596	BFN	M2
x 650	3	248	40,0	43,0	0,3949	BF	M2	x 450	-	148	32,0	35,0	0,2984	BFN	M2
x 700	28	273	42,0	45,0	0,4286	BF	M2	x 500	-	173	34,0	37,0	0,3371	BFN	M2
x 710	33	278	42,5	45,5	0,4354	BF	M2	x 550	-	198	36,5	39,5	0,3759	BF	M2
x 750	53	298	44,0	47,0	0,4624	BF	M3	x 560	-	203	37,0	40,0	0,3836	BF	M2
x 800	78	323	46,0	49,0	0,4961	BF	M3	x 600	-	223	39,0	42,0	0,4146	BF	M2
710 x 180	-	13	20,0	21,5	0,0788	BFL	M1	x 630	-	238	40,0	43,0	0,4379	BF	M3
x 200	-	23	21,0	22,5	0,0925	BFL	M1	x 650	3	248	40,5	43,5	0,4534	BF	M3
x 225	-	36	21,5	23,5	0,1096	BFL	M1	x 700	28	273	43,0	46,0	0,4921	BF	M3
x 250	-	48	22,0	24,5	0,1267	BFL	M1	x 710	33	278	43,5	46,5	0,4999	BF	M3
x 280	-	63	23,0	26,0	0,1473	BFL	M1	x 750	53	298	45,0	48,0	0,5309	BF	M3
x 300	-	73	23,5	26,5	0,1610	BFL	M2	x 800	78	323	47,0	50,0	0,5696	BF	M3
x 315	-	80,5	24,0	27,0	0,1713	BFL	M2	900 x 180	-	13	24,0	25,5	0,1006	BFL	M1
x 355	-	100,5	25,5	28,5	0,1987	BFN	M2	x 200	-	23	25,0	26,5	0,1181	BFL	M1
x 400	-	123	27,5	30,5	0,2295	BFN	M2	x 225	-	36	26,5	28,0	0,1400	BFL	M2
x 450	-	148	29,5	32,5	0,2637	BFN	M2	x 250	-	48	28,0	29,5	0,1619	BFL	M2
x 500	-	173	31,5	34,5	0,2980	BFN	M2	x 280	-	63	29,5	31,0	0,1881	BFL	M2
x 550	-	198	33,5	36,5	0,3322	BF	M2	x 300	-	73	30,0	31,5	0,2056	BFL	M2
x 560	-	203	34,0	37,0	0,3391	BF	M2	x 315	-	80,5	30,5	32,0	0,2188	BFN	M2
x 600	-	223	35,5	38,5	0,3665	BF	M2	x 355	-	100,5	31,0	33,5	0,2538	BFN	M2
x 630	-	238	36,5	39,5	0,3870	BF	M2	x 400	-	123	32,5	35,5	0,2931	BFN	M2
x 650	3	248	37,5	40,5	0,4007	BF	M2	x 450	-	148	35,0	38,0	0,3369	BFN	M2
x 700	28	273	39,5	42,5	0,4350	BF	M2	x 500	-	173	37,0	40,0	0,3806	BF	M2
x 710	33	278	40,0	43,0	0,4418	BF	M3	x 550	-	198	39,5	42,5	0,4244	BF	M2
x 750	53	298	41,5	44,5	0,4692	BF	M3	x 560	-	203	40,0	43,0	0,4331	BF	M3
x 800	78	323	43,5	46,5	0,5035	BF	M3	x 600	-	223	42,0	45,0	0,4681	BF	M3
750 x 180	-	13	21,0	22,5	0,0834	BFL	M1	x 630	-	238	43,5	46,5	0,4944	BF	M3
x 200	-	23	22,0	23,5	0,0979	BFL	M1	x 650	3	248	44,5	47,5	0,5119	BF	M3
x 225	-	36	22,5	24,5	0,1160	BFL	M1	x 700	28	273	47,0	50,0	0,5556	BF	M3
x 250	-	48	23,0	25,5	0,1341	BFL	M1	x 710	33	278	47,0	50,0	0,5644	BF	M3
x 280	-	63	24,0	27,0	0,1559	BFL	M2	x 750	53	298	49,0	52,0	0,5994	BF	M3
x 300	-	73	24,5	27,5	0,1704	BFL	M2	x 800	78	323	51,5	54,5	0,6431	BF	M3
x 315	-	80,5	25,0	28,0	0,1813	BFL	M2	1000 x 180	-	13	26,0	27,5	0,1121	BFL	M1
x 355	-	100,5	26,5	29,5	0,2103	BFN	M2	x 200	-	23	27,0	28,5	0,1316	BFL	M2
x 400	-	123	28,5	31,5	0,2429	BFN	M2	x 225	-	36	28,5	30,0	0,1560	BFL	M2
x 450	-	148	30,5	33,5	0,2791	BFN	M2	x 250	-	48	30,0	31,5	0,1804	BFL	M2
x 500	-	173	32,5	35,5	0,3154	BFN	M2	x 280	-	63	31,5	33,0	0,2096	BFL	M2
x 550	-	198	35,0	38,0	0,3516	BF	M2	x 300	-	73	32,5	34,0	0,2291	BFN	M2
x 560	-	203	35,0	38,5	0,3589	BF	M2	x 315	-	80,5	33,5	35,0	0,2438	BFN	M2
x 600	-	223	37,0	40,5	0,3879	BF	M2	x 355	-	100,5	35,5	37,0	0,2828	BFN	M2
x 630	-	238	38,0	41,0	0,4096	BF	M2	x 400	-	123	35,0	38,0	0,3266	BFN	M2
x 650	3	248	39,0	42,0	0,4241	BF	M2	x 450	-	148	37,5	40,5	0,3754	BFN	M2
										-					

			We	ight							Wei	ght			Meeh
A x B	а	с	Des	sign	Effect. area	Actu.	Mech.	AxB	а	с	Des	ign	Effect. area	Actu.	Mech.
[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m ²]	mech.	contr.	[mm]	[mm]	[mm]	mech [kg]	servo [kg]	Sef [m ²]	mech.	contr.
1000 x 500	-	173	40,0	43,0	0,4241	BF	M2	1250 x 650	3	248	56,5	59,5	0,7166	BF	M3
x 550	-	198	42,5	45,5	0,4729	BF	M3	x 700	28	273	60,0	63,0	0,7779	BF	M3
x 560	-	203	43,0	46,0	0,4826	BF	M3	x 710	33	278	60,0	63,0	0,7901	BF	M3
x 600	-	223	45,0	48,0	0,5216	BF	M3	x 750	53	298	62,5	65,5	0,8391	BF	M4
x 630	-	238	47,0	50,0	0,5509	BF	M3	x 800	78	323	65,5	68,5	0,9004	BF	M4
x 650	3	248	48,0	51,0	0,5704	BF	M3	1400 x 180	-	13	34,0	35,5	0,1581	BFL	M2
x 700	28	273	51,0	54,0	0,6191	BF	M3	x 200	-	23	35,5	37,0	0,1856	BFL	M2
x 710	33	278	51,0	54,0	0,6289	BF	M3	x 225	-	36	37,5	39,0	0,2200	BFL	M2
x 750	53	298	53,0	56,0	0,6679	BF	M3	x 250	-	48	39,5	41,0	0,2544	BFN	M2
x 800	78	323	55,5	58,5	0,7166	BF	M3	x 280	-	63	41,5	43,0	0,2956	BFN	M2
1100 x 180	-	13	28,0	29,5	0,1236	BFL	M1	x 300	-	73	43,0	44,5	0,3231	BFN	M2
x 200	-	23	29,0	30,5	0,1451	BFL	M2	x 315	-	80,5	44,0	47,0	0,3438	BFN	M2
x 225	-	36	30,5	32,0	0,1720	BFL	M2	x 355	-	100,5	47,0	50,0	0,3988	BFN	M2
x 250	-	48	32,0	33,5	0,1989	BFL	M2	x 400	-	123	50,0	53,0	0,4606	BF	M3
x 280	-	63	34,0	35,5	0,2311	BFL	M2	x 450	-	148	53,5	56,5	0,5294	BF	M3
x 300	-	73	35,0	36,5	0,2526	BFN	M2	x 500	-	173	52,0	55,0	0,5981	BF	M3
x 315	-	80,5	36,0	37,5	0,2688	BFN	M2	x 550	-	198	55,5	58,5	0,6669	BF	M3
x 355	-	100,5	38,0	40,0	0,3118	BFN	M2	x 560	-	203	56,0	59,0	0,6806	BF	M3
x 400	-	123	38,5	41,0	0,3601	BFN	M2	x 600	-	223	59,0	62,0	0,7356	BF	M3
x 450	-	148	40,5	43,5	0,4139	BF	M2	x 630	-	238	60,5	63,5	0,7769	BF	M3
x 500	-	173	43,0	46,0	0,4676	BF	M3	x 650	3	248	62,0	65,0	0,8044	BF	M4
x 550	-	198	46,0	49,0	0,5214	BF	M3	x 700	28	273	65,5	68,5	0,8731	BF	M4
x 560 x 600	-	203	46,5	49,5	0,5321	BF	M3	x 710	33	278	66,0	69,0	0,8869	BF	M4
x 600	-	223 238	49,0 50,0	52,0 53,0	0,5751 0,6074	BF BF	M3 M3	x 750 x 800	53 78	298 323	68,5 71,5	71,5 74,5	0,9419 1,0106	BF BF	M4 M4
x 650	- 3	230	51,5	54,5	0,6289	BF	M3	1500 x 180	-	13	36.0	37,5	0,1696	BFL	M2
x 700	28	273	54,5	57,5	0,6826	BF	M3	x 200	-	23	37,5	39,0	0,1991	BFL	M2
x 710	33	278	54,5	57,5	0,6934	BF	M3	x 200	-	36	39,5	41,0	0,1331	BFL	M2
x 750	53	298	56,5	59,5	0,7364	BF	M3	x 250	-	48	41,5	43,0	0,2729	BFN	M2
x 800	78	323	59,5	62,5	0,7901	BF	M3	x 280	-	63	44,0	45,5	0,3171	BFN	M2
1250 x 180	-	13	31,0	32,5	0,1409	BFL	M2	x 300	-	73	45,5	48,5	0,3466	BFN	M2
x 200	-	23	32,5	34,0	0,1654	BFL	M2	x 315	-	80,5	46,5	49,5	0,3688	BFN	M2
x 225	-	36	34,0	35,5		BFL	M2	x 355	-	100,5	-	52,5	0,4278	BFN	M3
x 250	-	48	35,5	37,0	0,2266	BFL	M2	x 400	-	123	53,0	56,0	0,4941	BF	M3
x 280	-	63	37,5	39,0	0,2634	BFN	M2	x 450	-	148	55,0	58,0	0,5679	BF	M3
x 300	-	73	39,0	40,5	0,2879	BFN	M2	x 500	-	173	57,0	60,0	0,6416	BF	M3
x 315	-	80,5	40,0	41,5	0,3063	BFN	M2	x 550	-	198	58,5	61,5	0,7154	BF	M3
x 355	-	100,5	42,5	45,5	0,3553	BFN	M2	x 560	-	203	59,5	62,5	0,7301	BF	M3
x 400	-	123	45,5	48,5	0,4104	BFN	M2	x 600	-	223	62,5	65,5	0,7891	BF	M3
x 450	-	148	49,0	52,0	0,4716	BF	M3	x 630	-	238	64,0	67,0	0,8334	BF	M4
x 500	-	173	47,5	50,5	0,5329	BF	M3	x 650	3	248	65,5	68,5	0,8629	BF	M4
x 550	-	198	50,5	53,5	0,5941	BF	M3	x 700	28	273	69,5	72,5	0,9366	BF	M4
x 560	-	203	51,5	54,5	0,6064	BF	M3	x 710	33	278	69,5	79,5	0,9514	BF	M4
x 600	-	223	54,0	57,0	0,6554	BF	M3	x 750	53	298	72,5	75,5	1,0104	BF	M4
x 630	-	238	55,5	58,5	0,6921	BF	M3	x 800	78	323	75,5	78,5	1,0841	BF	M4

4.4. Round dampers - dimensions, weights and effective area

			We	ight			
Nominal size øD [mm]	g [mm]	h [mm]	des	sign	Effective area S _{ef} [m²]	Actuating mechanism	Mechanical control
[]			manual [kg]	act. mech. [kg]			
180	-	-	6,7	8,3	0,0137	BFL	M1
200	-	-	7,7	9,3	0,0182	BFL	M1
225	-	-	8,2	9,8	0,0248	BFL	M1
250	-	1,5	8,7	10,3	0,0323	BFL	M1
280	-	16,5	9,6	11,2	0,0427	BFL	M2
315	-	34,0	10,6	12,2	0,0565	BFL	M2
355	-	54,0	12,6	14,2	0,0747	BFL	M2
400	-	76,5	13,7	16,7	0,0982	BFL	M2
450	-	101,5	15,6	18,6	0,1279	BFN	M2
500	-	126,5	18,5	21,5	0,1617	BFN	M3
560	-	156,5	21,3	24,3	0,2073	BFN	M3
630	-	191,5	24,5	27,5	0,2677	BF	M3
710	-	231,5	32,1	34,8	0,3461	BF	M4
800	34,5	276,5	35,6 38,6		0,4464	BF	M4
900	84,5	326,5	53,0	56,0	0,5727	BF	M4
1000	134,5	376,5	70,9	73,9	0,7147	BF	M4

Tab. 4.4.2. Round dampers with flanges - dimensions, weights and effective area

Nominal size			We	ight			
øD [mm]	e [mm]	f [mm]	des	sign	Effective area S _{ef} [m ²]	Actuating mechanism	Mechanical control
[]			manual [kg]	act. mech. [kg]			
180	-	16,5	6,7	8,3	0,0137	BFL	M1
200	-	26,5	7,7 9,3		0,0182	BFL	M1
225	-	39,0	8,2 9,8		0,0248	BFL	M1
250	-	51,5	8,7	10,3	0,0323	BFL	M1
280	-	66,5	9,6	11,2	0,0427	BFL	M2
315	-	84,0	10,6	12,2	0,0565	BFL	M2
355	-	104,0	12,6	14,2	0,0747	BFL	M2
400	-	126,5	14,5	17,5	0,0982	BFL	M2
450	-	151,5	16,4	19,4	0,1279	BFN	M2
500	-	176,5	19,4	22,4	0,1617	BFN	M3
560	-	206,5	22,3	25,3	0,2073	BFN	M3
630	-	241,5	26,2	29,2	0,2677	BF	M3
710	39,5	281,5	32,0	35,0	0,3461	BF	M4
800	84,5	326,5	38,0	38,0 41,0		BF	M4
900	134,5	376,5	56,0 59,0		0,5727	BF	M4
1000	184,5	426,5	74,0 77,0		0,7147	BF	M4

4.5. Blades overlaps

Tab. 4.5.1 Blades overlaps

Blades overlaps		Dimension	Overlaps
RECTANGULAR DAMPERS Fig. 33a	Act. mechanism side	"a"	Tab. 4.3.1
	Side without act. mechanism	"c"	Tab. 4.3.1
ROUND DAMPERS Fig. 33b	Act. mechanism side	"e"	Tab. 4.4.1
	Side without act. mechanism	"f"	Tab. 4.4.1
ROUND DAMPERS SPIRO Fig. 33c	Act. mechanism side	"g"	Tab. 4.4.2
	Side without act. mechanism	"h"	Tab. 4.4.2

These values has to be respected when projecting related air-conditioning ducts.

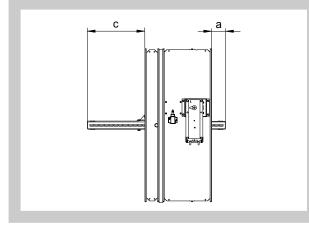
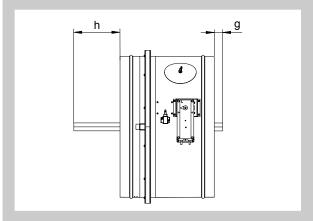



Fig. 33c Blade overlaps - round damper SPIRO

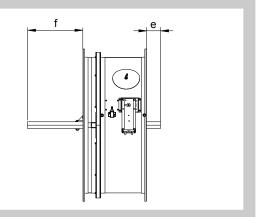
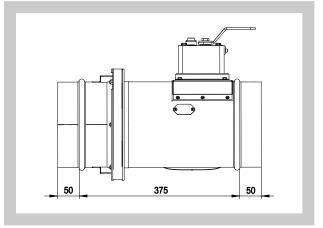



Fig. 33d Damper for SPIRO duct

- **4.6.** For the design .60 (with BKN supply and communication device) add to weight of the damper with an actuating mechanism (from the Tab. 4.3.1., 4.4.1. and 4.4.2.) the weight of BKN (0.5 kg).
- **4.7.** rectangular dampers can be supplied on the customer's demands in all subdimension of the above mentioned range.
- **4.8.** Flanges of rectangular fire dampers are 30 mm wide with oval hole (Fig. 34, 35). Dimensions of damper connecting flanges are in accordance with EN 12 220. In case of damper installation into SPIRO duct, round dampers are supplied without the flanges so as it is possible to connect them with external joints (it is necessary to specify this requirement in the order). Damper length for SPIRO duct is 475 mm (Fig. 33d).

Fig. 34 Flage of rectangular damper - OPERATORS SIDE

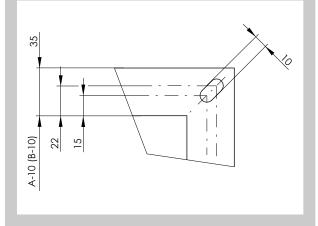
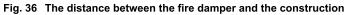
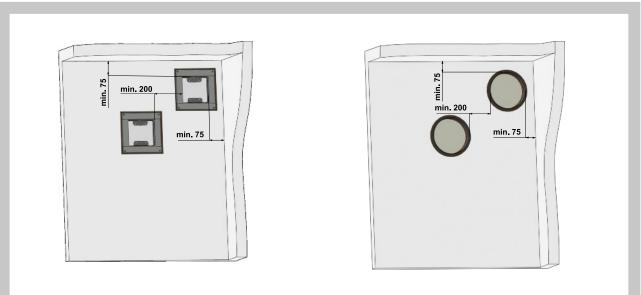


Fig. 35 Flage of rectangular damper - INSTALLATIONS SIDE

5. Placement and Assembly


5.1. Fire dampers are suitable for installation in arbitrary position in vertical and horizontal passages of fire separating constructions. Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded. Installation gap must be filled by approved material perfectly in all the installation space volume (installation gap).


To provide needed access space to the control device, all other objects must be situated at least 350 mm from the control parts of the damper. Inspection hole must be accessible.

Damper blade has to be inside of construction (labelled with BUILD IN EDGE on the damper body) after installation. The fire damper can also be installed outside the wall construction. Duct and the damper part between the wall construction and the damper blade (labelled with BUILD IN EDGE on the protective covering) must be protected with firefighting insulation (see fig. 36).

The distance between the fire damper and the construction (wall, ceiling) must be minimum 75 mm. In case that two or more dampers are supposed to be installed in one fire separating construction, the distance between the adjacent dampers must be at least 200 mm according to EN 1366-2 paragraph 13.5.

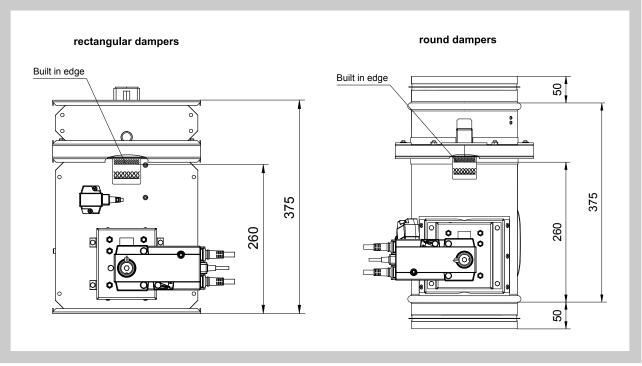
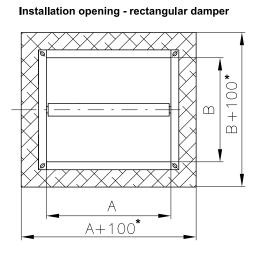

Exceptions are given in chapter 6.

Fig. 37 Built in edge



"Wall edge sticker" indicates the recommended edge of installation of fire damper into the fire partition structure (wall). The damper must be installed so that the entire damper blade - in the closed position - is located inside the fire separating structure (wall) and at the same time the control mechanism and inspection openings are freely accessible.

5.2. The control mechanism has to be protected (covered) against damage and pollution during installation process.

All fire dampers has to be closed during installation process. The damper body should not be deformed in the course of bricking in. Once the damper is built in, its blade should not grind on the damper body during opening or closing.

- 5.3. Installation opening dimensions
- Fig. 38 Installation opening rectangular damper

* The recommended dimension of the installation opening is from 25 mm to 50 mm on the both sides (it means from A+50 to A+100 or B+50 to B+100)

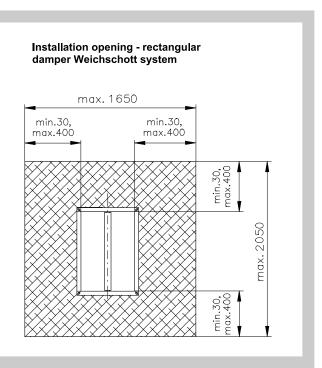
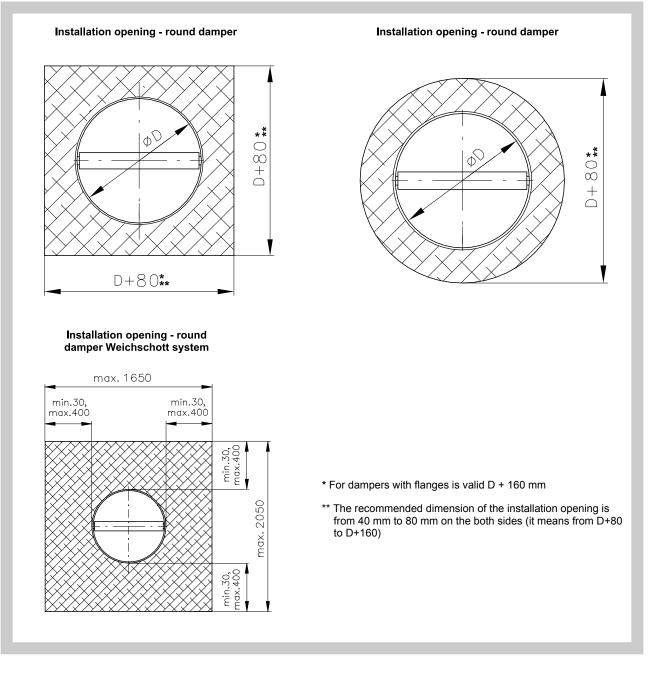



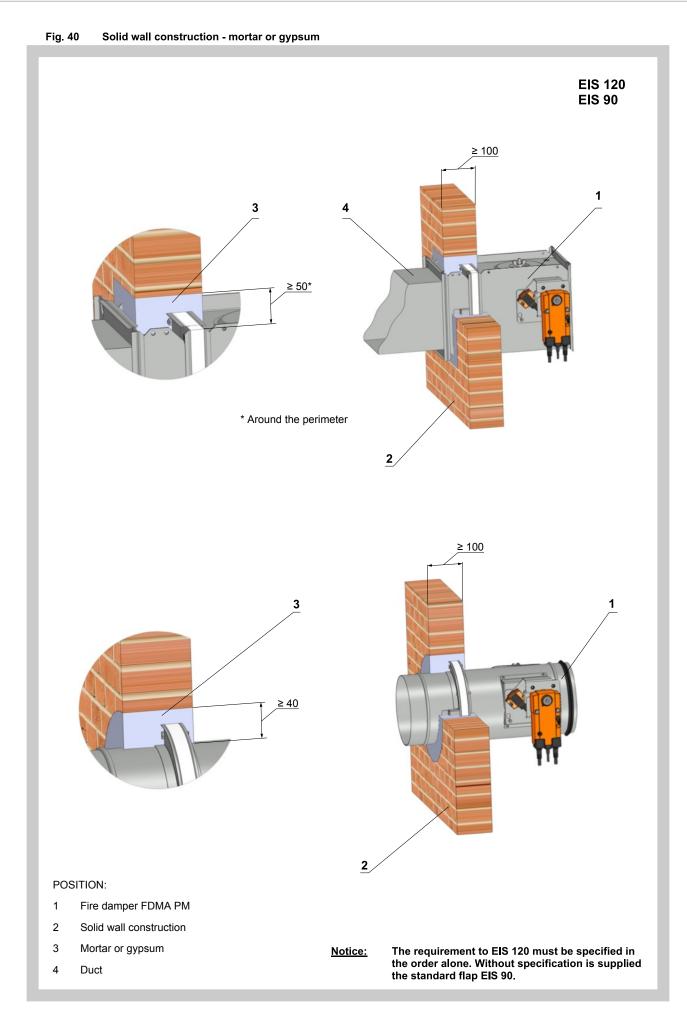
Fig. 39 Installation opening - round damper

5.4. Examples of fire damper installing

The fire damper can be integrated into a solid wall construction made e.g. of normal concrete/ masonry, porous concrete with minimum thickness 100 mm or into solid ceiling construction made e.g. of normal concrete with minimum thickness 110 mm or porous concrete with minimum thickness 125 mm.

The fire damper can be integrated into a gypsum wall construction with fire classification EI120 or EI 90.

The fire damper can also be integrated outside the wall construction. Duct and the damper part between the wall construction and the damper blade (labelled with BUILD IN EDGE on the protective covering) must be protected with fire-fighting insulation.


If is rectangular damper installed outside a construction it is necessary to use reinforcement VRM for dampers with dimension A \ge 800 mm.

6 Statement of installations

6.1. Statement of installations the fire dampers FDMA PM

Tab. 6.1.1. Statement of installations

	Wall/Ceiling		Fire	
Fire separating construction	Min. thickness [mm]	Installation	resistance	Page
Solid wall construction	100	Mortar or gypsum	EIS 120 EIS 90	33
	100	Stuffing box + mastic and cement lime plate	EIS 90	38
	100	Battery - Mortar or gypsum	EIS 90	34
	100	Installation frame E1, E2, E4, R1, R2, R3, R4, R5	EIS 90	39
	100	Weichschott	EIS 90	40
	100	Installation next to wall - mortar or gypsum and mineral wool	EIS 90	35, 36
	100	Installation next to wall - Installation frame R1, R2, R3, R4, R5 and mineral wool	EIS 90	36, 37
	100	Battery - Installation frame E1, R1	EIS 90	41
	100	Fire resistant foam covered by stucco plaster	EIS 60 EIS 45 EIS 30	85
Solid ceiling construction	110	Mortar or gypsum	EIS 120 EIS 90	44
	110	Stuffing box + mastic and cement lime plate	EIS 90	46
	110	Battery - Mortar or gypsum	EIS 90	45
	110	Installation frame E1, E2, E4, R1, R2, R3, R4, R5	EIS 90	47
	110	Weichschott	EIS 90	48
	110	Battery - Installation frame E1, R2	EIS 90	49
Gypsum wall construction	100	Mortar or gypsum	EIS 120 EIS 90	53
	100	Stuffing box + mastic and cement lime plate	EIS 90	58
	100	Battery - Mortar or gypsum	EIS 90	54
	100	Installation frame E1, E3, E4, R1, R2, R3, R4, R5	EIS 90	59
	100	Weichschott	EIS 90	60
	100	Installation next to wall - mortar or gypsum and mineral wool	EIS 90	55
	100	Installation next to wall - Installation frame R1, R2, R5 and mineral wool	EIS 90	56, 57
	100	Movable ceiling - Installation frame E5, R7	EIS 90	63
	100	Battery - Installation frame E1, R1	EIS 90	61
	100	Fire resistant foam covered by stucco plaster	EIS 60 EIS 45 EIS 30	86
Thin shaft wall	100	Mortar or gypsum - rectangular damper	EIS 90	81
	100	Mortar or gypsum - round damper	EIS 90	83
	100	Installation frame E1 - rectangular damper	EIS 90	82
	100	Installation frame R1 - round damper	EIS 90	84
Outside solid wall	100	Insulating with cement lime plates Installation frame E6, R6	EIS 90	43
construction	100	Insulating mineral wool	EIS 90	42
	100	Insulating mineral wool - Mortar or gypsum	EIS 60 EIS 45	87
	100	Insulating mineral wool - stone wool + mastic	EIS 60 EIS 45	88
Outside gypsum wall	100	Insulating mineral wool	EIS 90	62
construction	100	Insulating mineral wool - Mortar or gypsum	EIS 60 EIS 45	89
	100	Insulating mineral wool - stone wool + mastic	EIS 60 EIS 45	90
	110	Insulating mineral wool	EIS 90	50
Outside solid ceiling	110	Concrete	EIS 90	51
construction	110	Concrete with installation frame E4, R5	EIS 90	51
	110	Insulating with cement lime plates Installation frame E6, R6	EIS 90	52
On solid wall construction	100	Installation frame D5	EIS 90	77
On solid ceiling construction	110	Installation frame D5	EIS 90	77
On gypsum wall construction	100	Installation frame D5	EIS 90	77

Mortar or gypsum

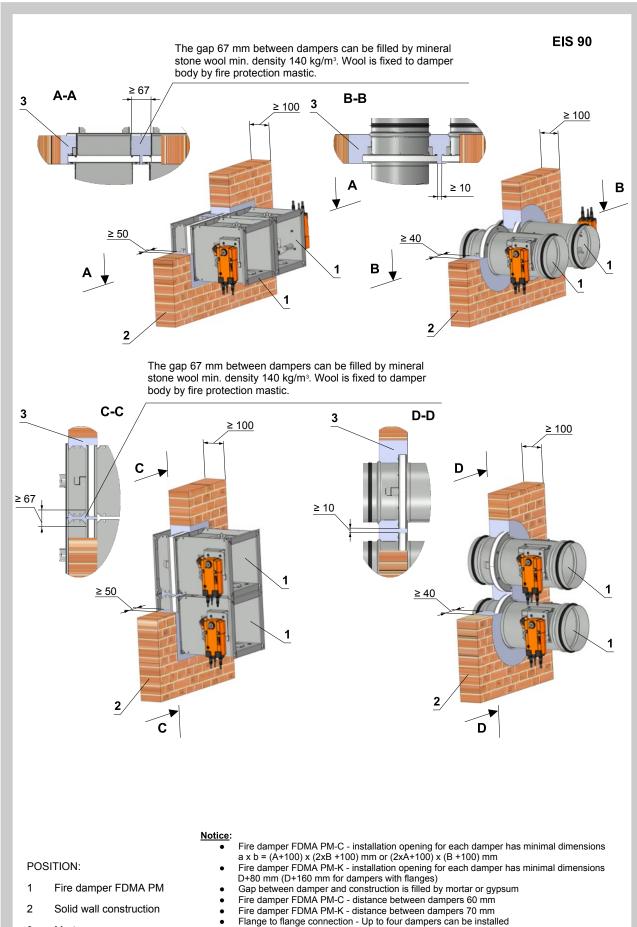
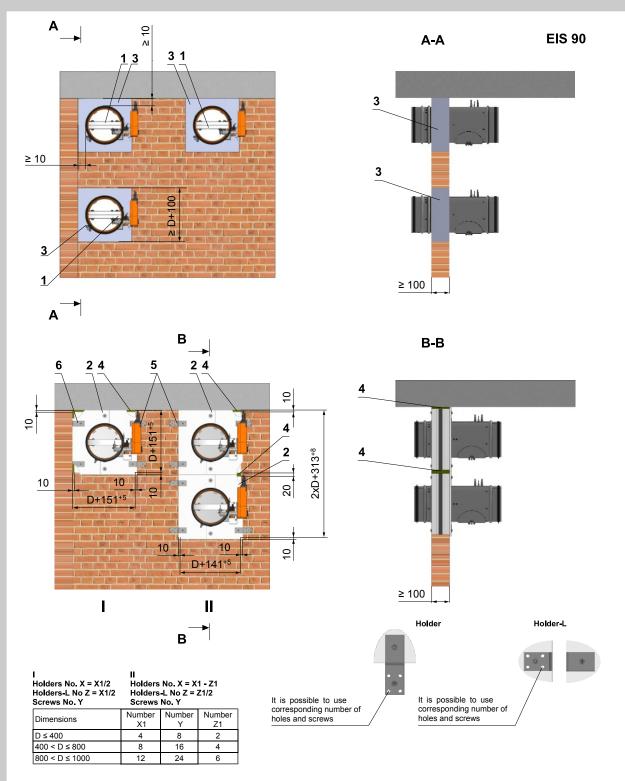


Fig. 41 Solid wall construction - flange to flange - mortar or gypsum

34

EIS 90 A__ • A-A ≥ 50 ⁰Ω 312 312 ≥ 50 3 2 ≥ 50 1 2 3 3 2 ≥ B+100 ≥ 100 Α (≥ 100)+20 В ≥ B-B 0-20 D-20 21 3 2 1 3 2 3 ≥ 10 3 D-20 2 <u>3</u> 2 ≥ 100 (≥ 100)+50 В Notice:

Fig. 42 Solid wall construction - installation next to wall, ceiling - mortar or gypsum and mineral wool


Gap between damper and construction is filled by mortar

- or gypsum and mineral wool Wool is fixed to damper body and construction by fire
- protection mastic. Mineral wool thickness = construction thickness + 20 mm or 50 mm
- Installation is valid for ceiling construction •

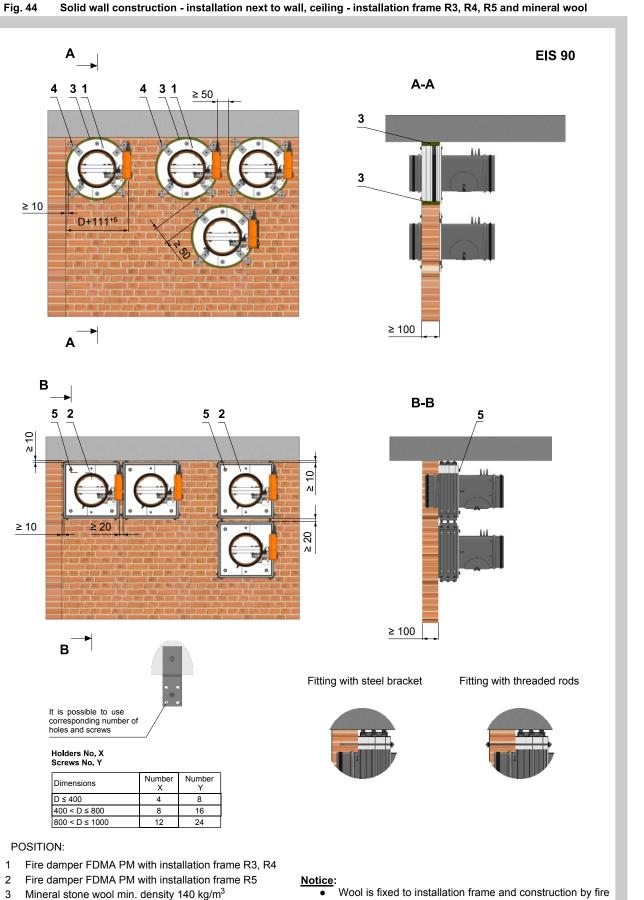
POSITION:

- Fire damper FDMA PM 1
- Mortar or gypsum 2
- 3 Mineral stone wool min. density 140 kg/m³

Fig. 43 Solid wall construction - installation next to wall, ceiling - mortar or gypsum Solid wall construction - installation next to wall, ceiling - installation frame R1, R2 and mineral wool

POSITION:

- 1 Fire damper FDMA PM
- 2 Fire damper FDMA PM with installation frame R1, R2
- 3 Mortar or gypsum
- 4 Mineral stone wool min. density 140 kg/m³
- 5 Holder
- 6 Holder L

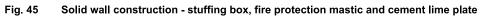

Notice:

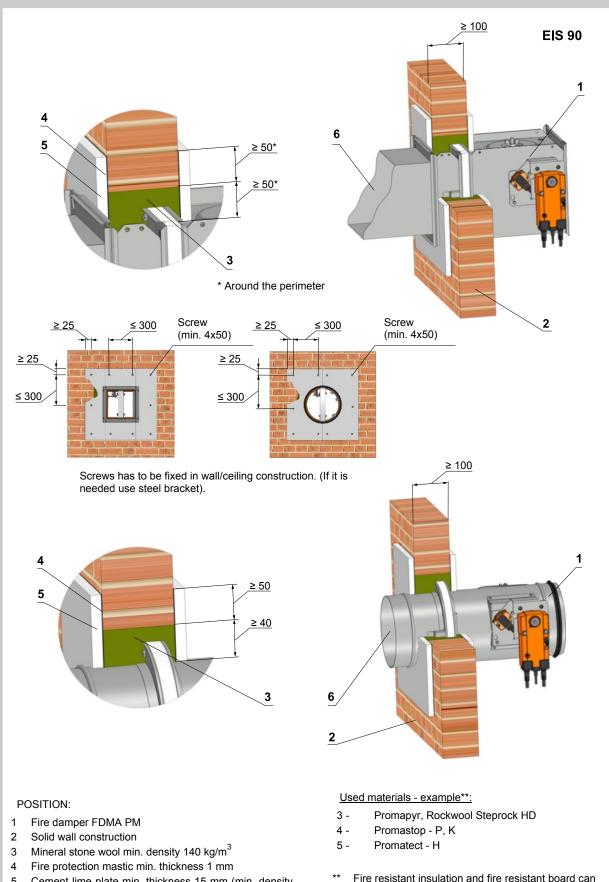
- Gap between frame and damper body and frame and construction must be filled by glue (PROMAT K84).
 Wool is fixed to installation frame and construction by fire
- Wool is fixed to installation frame and construction by fire protection mastic.
- Installation is valid for ceiling construction

5

Holder

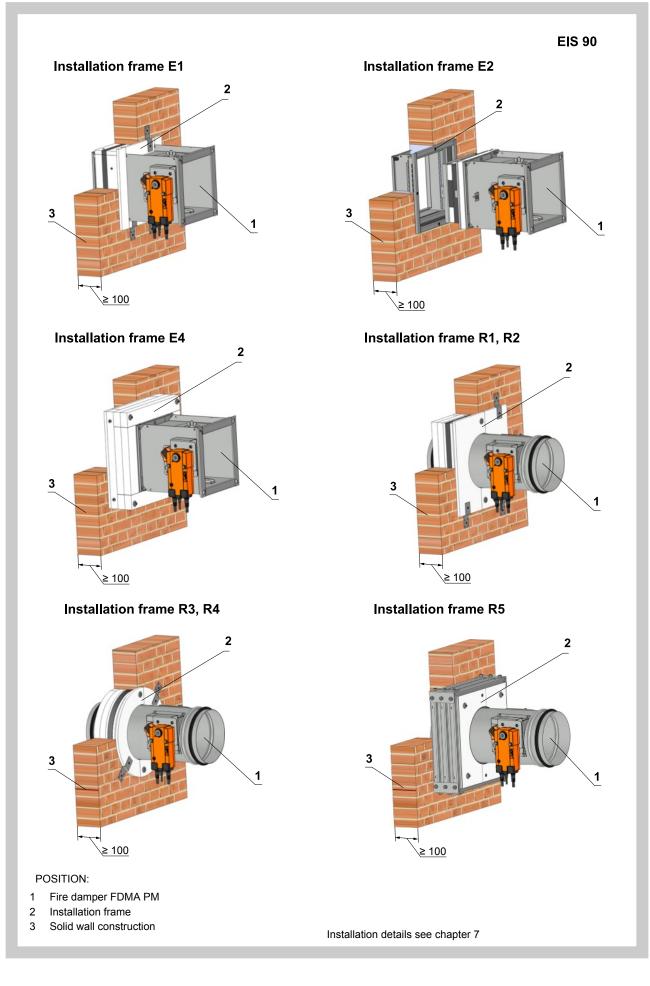
Fitting with threaded rods or steel bracket


Solid wall construction - installation next to wall, ceiling - installation frame R3, R4, R5 and mineral wool


37

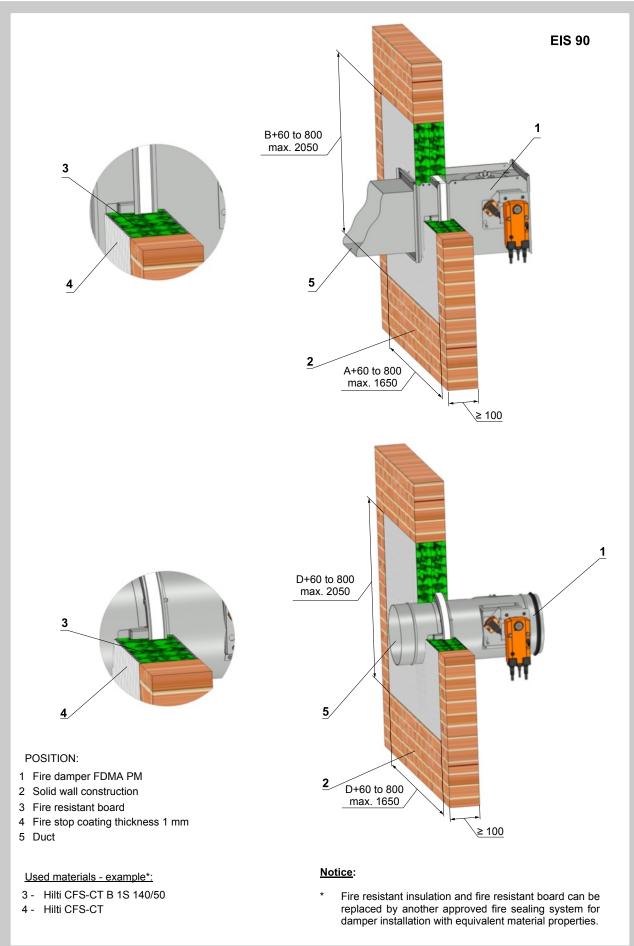
protection mastic.

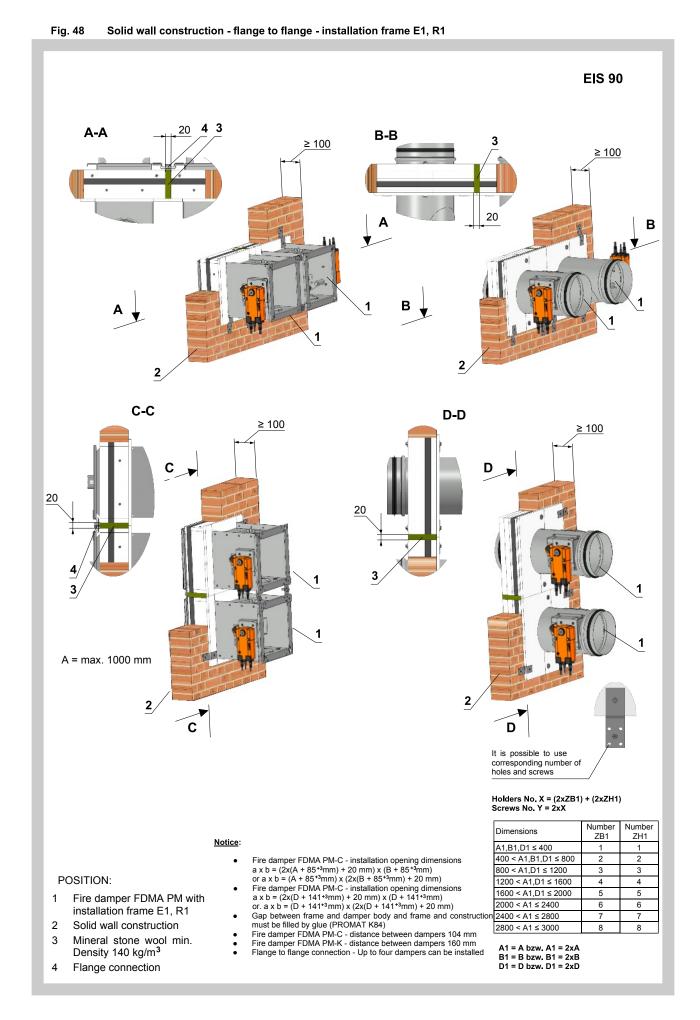
Installation is valid for ceiling construction



5 Cement lime plate min. thickness 15 mm (min. density 870 kg/m^3)

6 Duct


** Fire resistant insulation and fire resistant board can be replaced by another approved fire sealing system for damper installation with equivalent material properties.


Fig. 46 Solid wall construction - installation frames E1, E2, E4, R1, R2, R3, R4, R5

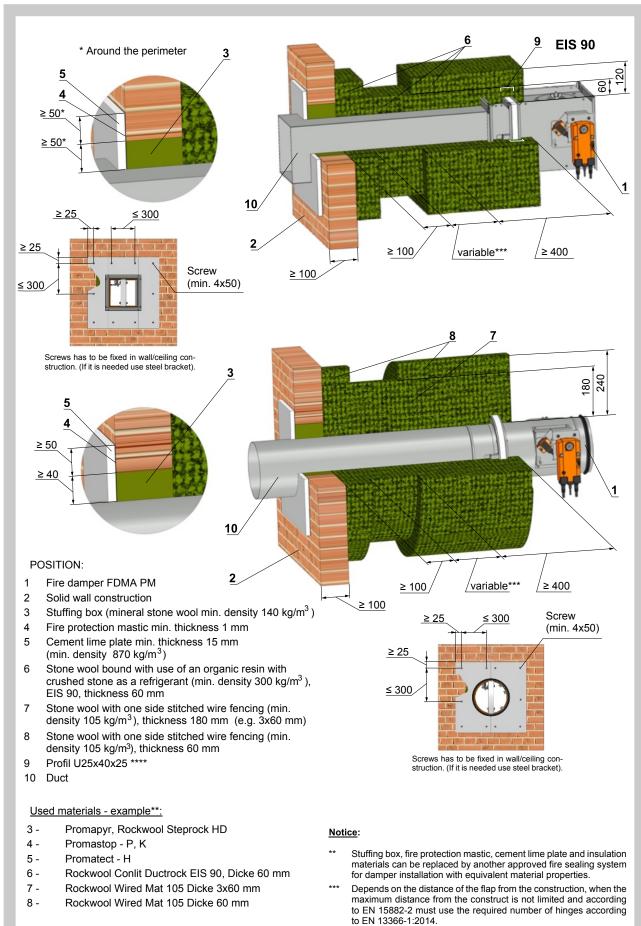

ΜΛΝϽίκ[®]

Fig. 47 Solid wall construction - Weichschott

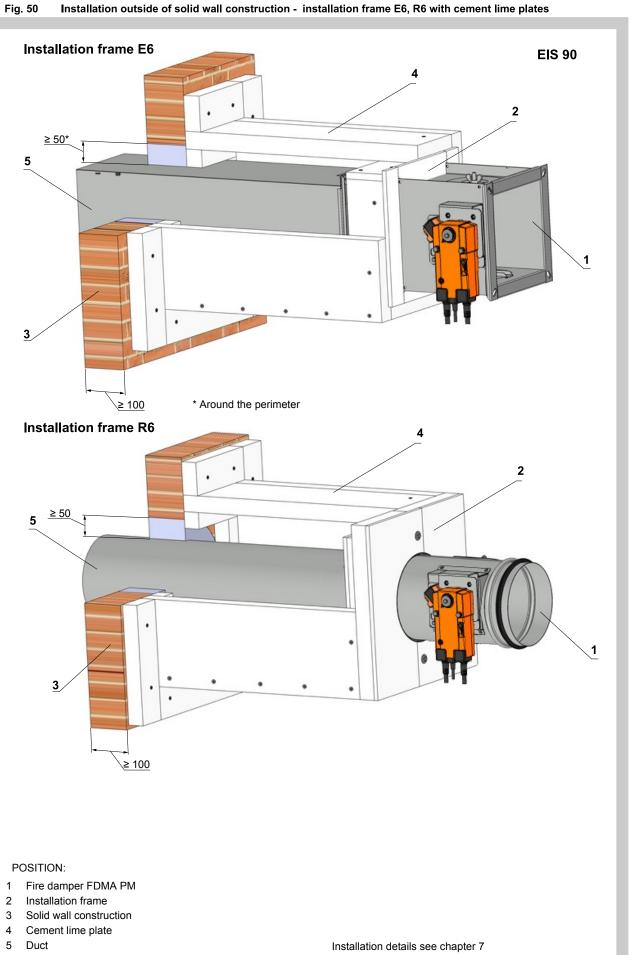
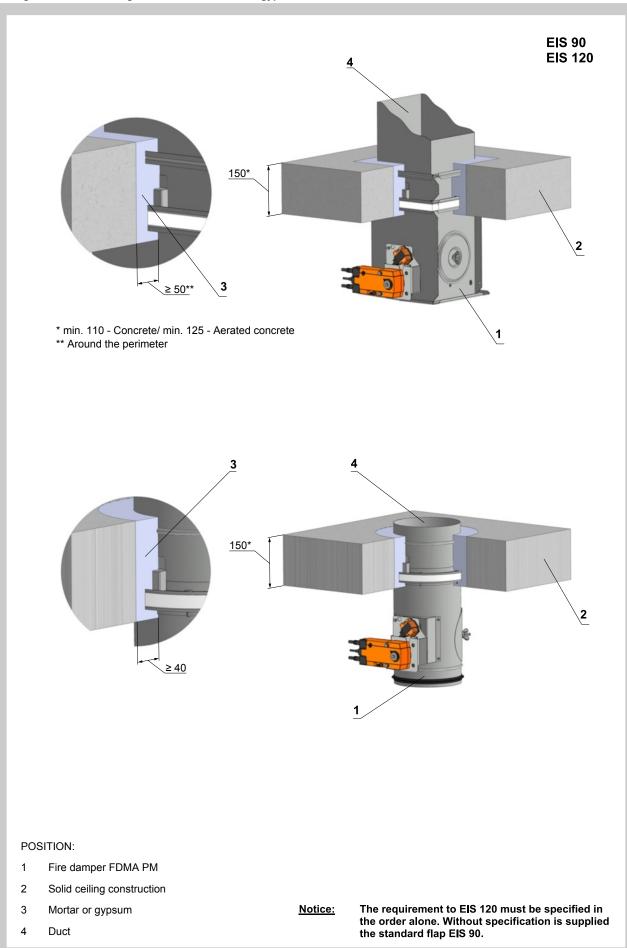
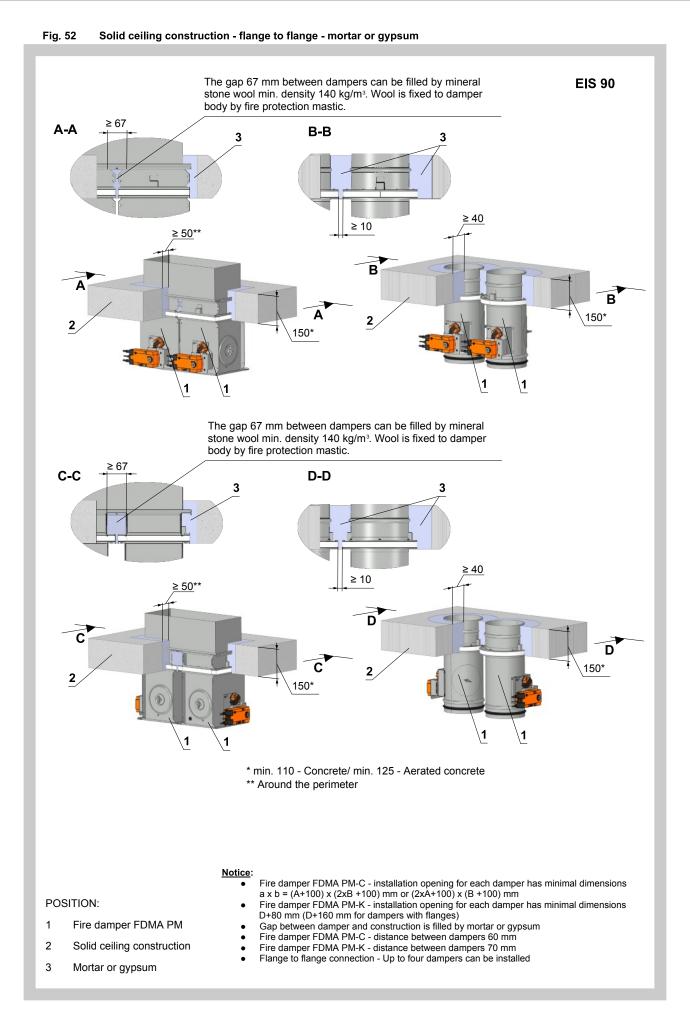


Fig. 49 Installation outside of solid wall construction - mineral wool

**** Installation of profile U25x40x25 see Fig.73


Installation details of wool layers see chapter 8



Installation outside of solid wall construction - installation frame E6, R6 with cement lime plates

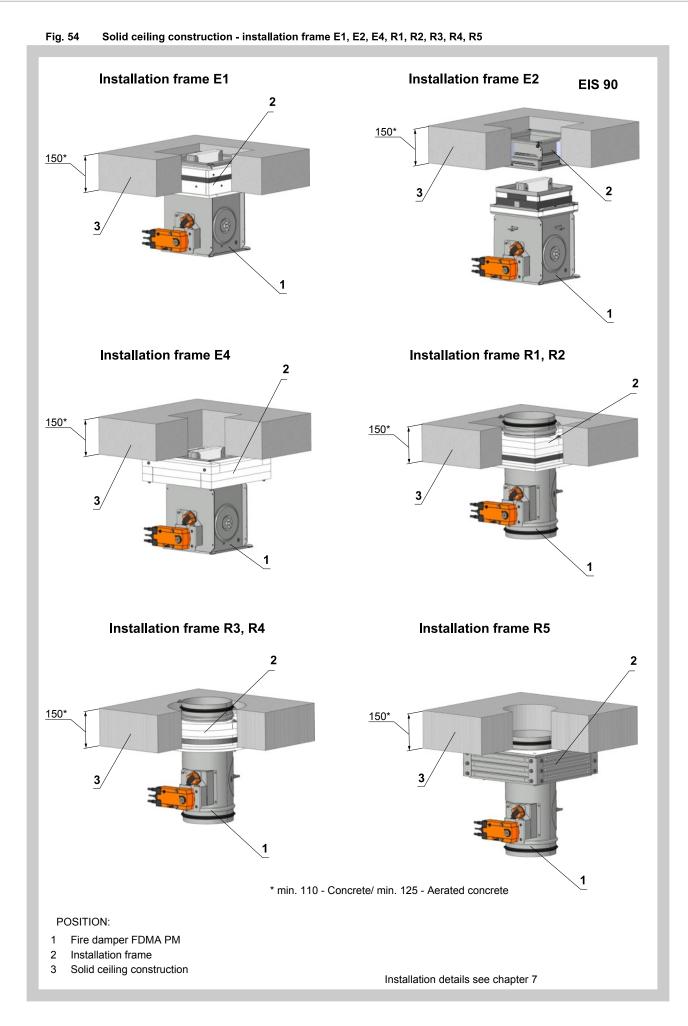

ΜΛΝϽίκ[®]

Fig. 51 Solid ceiling construction - mortar or gypsum

Fig. 53 Solid ceiling construction - stuffing box, fire protection mastic and cement lime plate <u>6</u> **EIS 90** <u>≥ 50*</u>* <u>≥ 50**</u> 150* 2 3 1 Screw ≤ 300 Screw ≥ 25 ≥ 2 (min. 4x50) (min. 4x50) <u>≥ 2</u>5 <u>≥ 2</u>5 ≤ 300 ≤ 300 Screws has to be fixed in wall/ceiling construction. (If it is needed use steel bracket). * min. 110 - Concrete/ min. 125 - Aerated concrete ** Around the perimeter 6 ≥ 40 ≥ 50 150* 2 4 5 <u>3</u> 1 Used materials - example**: POSITION: 3 -Promapyr, Rockwool Steprock HD Fire damper FDMA PM 1 4 -Promastop - P, K 2 Solid ceiling construction 5 -Promatect - H Mineral stone wool min. density 140 kg/m³ 3 Fire protection mastic min. thickness 1 mm 4 ** Fire resistant insulation and fire resistant board can Cement lime plate min. thickness 15 mm (min. density 5 be replaced by another approved fire sealing system 870 kg/m³) for damper installation with equivalent material 6 Duct properties.

Fig. 55 Solid ceiling construction - Weichschott

Hilti CFS-CT

4 -

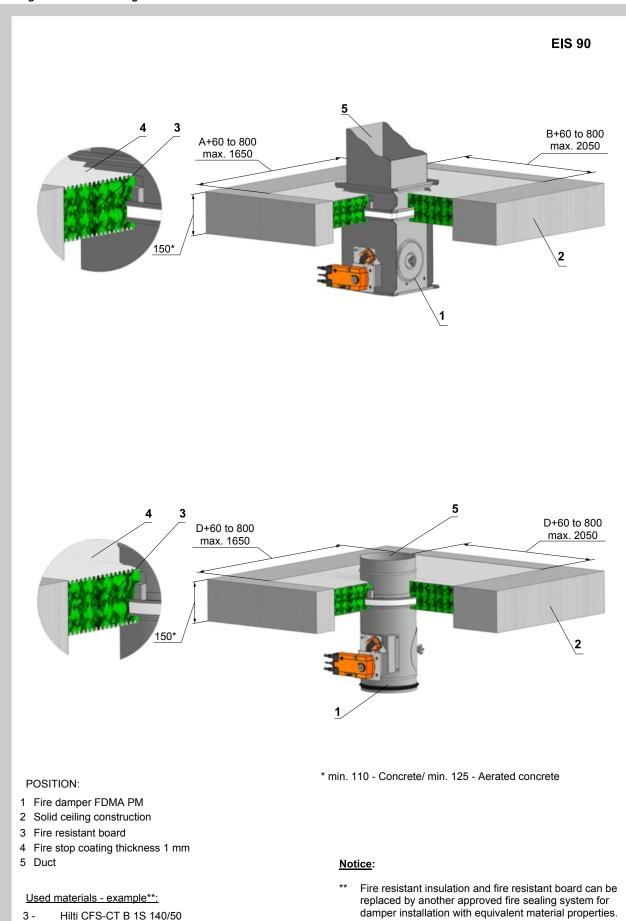


Fig. 56

EIS 90 3 20 A-A B-B 3 20 В Δ B Α 150* 2 2 150* 1 1 1 4 3 20 C-C D-D 3 20 D С D C 150* 2 2 150* 1 1 1 1 B = max. 1000 mm It is possible to use * min. 110 - Concrete/ min. 125 - Aerated concrete corresponding number of holes and screws Holders No. X = (2xZB1) + (2xZH1) Screws No. Y = 2xX Number Number Dimensions ZB1 ZH1 Notice: A1,B1,D1 ≤ 400 1 1 Fire damper FDMA PM-C - installation opening dimensions 400 < A1,B1,D1 ≤ 800 2 2 . Fire damper FDMA PM-C - installation opening dimensions a x b = (2x(A + 85⁴³ mm) + 20 mm) x (B + 85⁴³ mm) or a x b = (A + 85⁴³ mm) x (2x(B + 85⁴³ mm) + 20 mm) Fire damper FDMA PM-K - installation opening dimensions a x b = (2x(D + 141⁴³ mm) + 20 mm) x (D + 141⁴³ mm) or a x b = (D + 141⁴³ mm) + (2x(D + 141⁴³ mm) + 20 mm) Gap between frame and damper body and frame and construction must be filled by glue (PROMAT K84) Fire damper FDMA PM-K - distance between dampers 104 mm Fire damper FDMA PM-K - distance between dampers 160 mm 800 < A1,D1 ≤ 1200 3 3 POSITION: 1200 < A1,D1 ≤ 1600 4 4 1 Fire damper FDMA PM 1600 < A1,D1 ≤ 2000 5 5 with installation frame E1, R2 2000 < A1 ≤ 2400 6 6 2400 < A1 ≤ 2800 7 7 2 Solid ceiling construction 2800 < A1 ≤ 3000 8 8 Stuffing box (mineral stone 3 wool min. density 140 kg/m³)

Solid ceiling construction - flange to flange - installation frame E1, R2

- 4 Flange connection
- - Flange to flange connection Up to four dampers can be installed
- A1 = A bzw. A1 = 2xA B1 = B bzw. B1 = 2xB D1 = D bzw. D1 = 2xD

49

Fig. 57

<u>≥ 5</u>0** **EIS 90** 8 2 ≥ 100 150* variable**** 3 * min. 110 - Concrete/ min. 125 - Aerated concrete ** Around the perimeter ≥ 400 ≥ 40 60 120 8 2 ≥ 100 6494 ≥ 150 variable**** 3 6 ≥ 400 POSITION: 5 Fire damper FDMA PM 1 2 Solid ceiling construction 3 Mortar or gypsum 4 Stone wool bound with use of an organic resin with crushed stone as a refrigerant (min. density 300 kg/m³), EIS 90, thickness 60 mm 5 Stone wool with one side stitched wire fencing (min. 180 density 105 kg/m³), thickness 180 mm (e.g. 3x60 mm) 1 240 6 Stone wool with one side stitched wire fencing (min. density 105 kg/m³), thickness 60 mm 7 Profil U25x40x25 ***** 8 Duct

Installation outside of solid ceiling construction - mineral wool

Used materials - example***:

- 4 Rockwool Conlit Ductrock EIS 90, Dicke 60 mm
- 5 Rockwool Wired Mat 105 Dicke 3x60 mm
- 6 Rockwool Wired Mat 105 Dicke 60 mm

Installation details of wool layers see chapter 8

Notice:

- *** Stuffing box, fire protection mastic, cement lime plate and insulation materials can be replaced by another approved fire sealing system for damper installation with equivalent material properties.
- **** Depends on the distance of the flap from the construction, when the maximum distance from the construct is not limited and according to EN 15882-2 must use the required number of hinges according to EN 13366-1:2014.
- ***** Installation of profile U25x40x25 see Fig.73

Fig. 58 Installation outside of solid ceiling construction - concrete

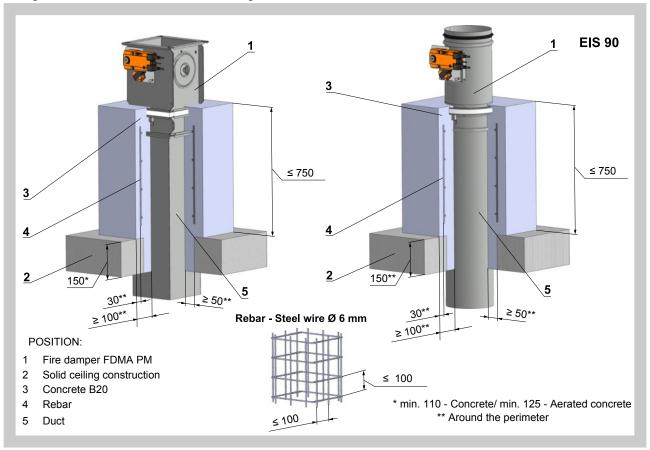
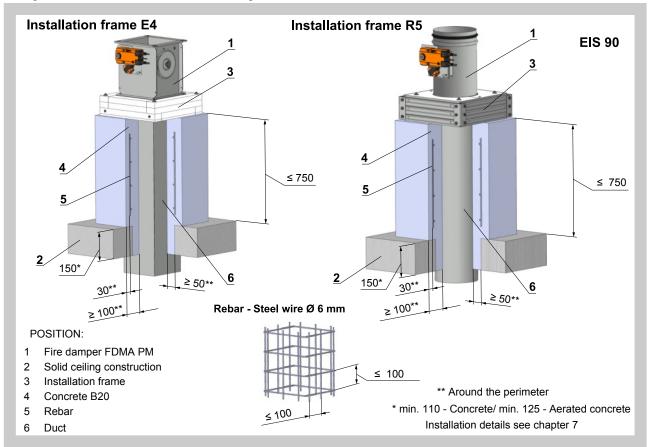
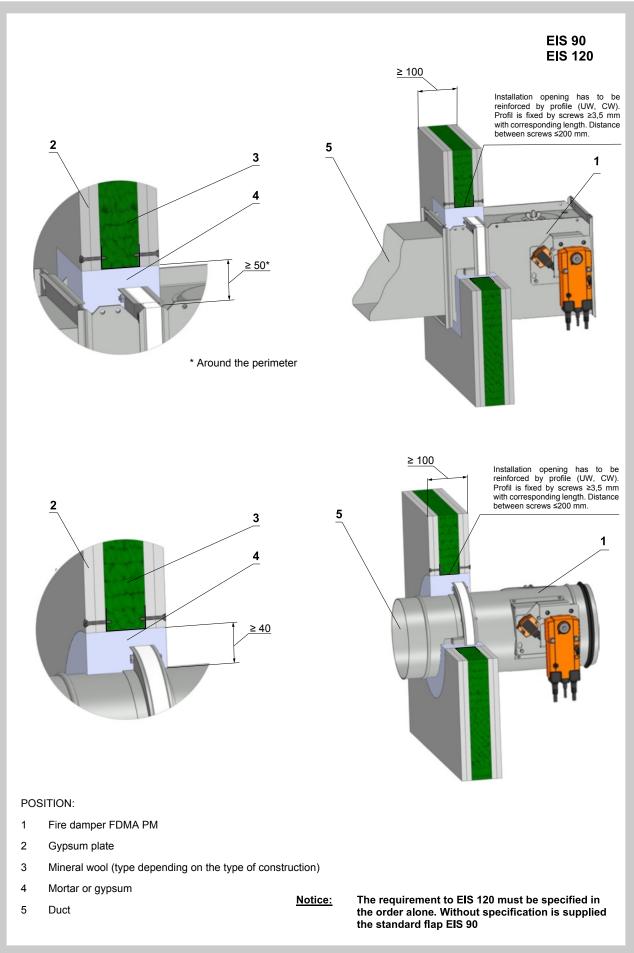
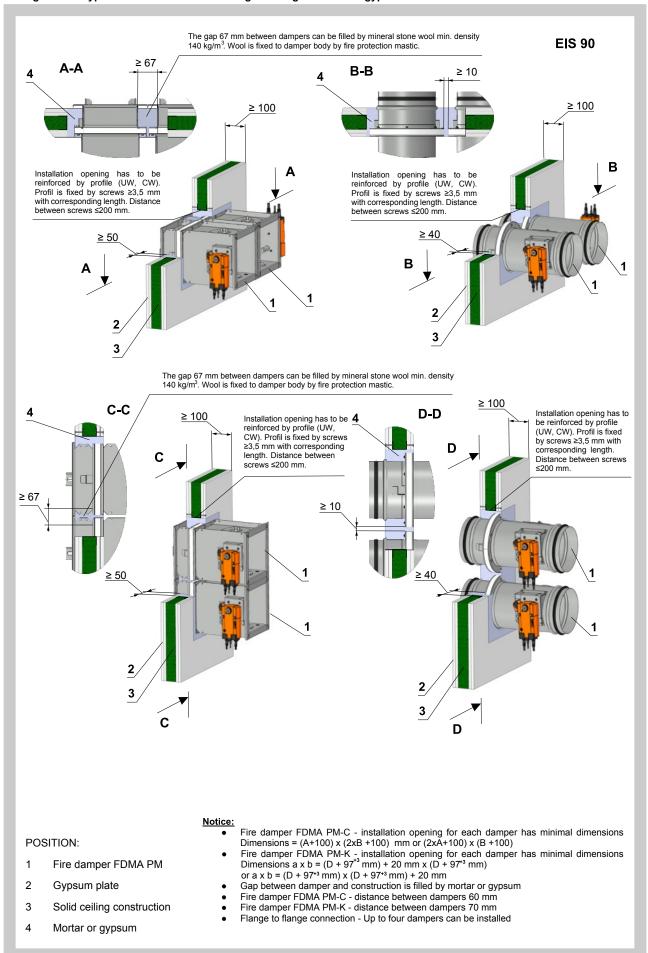



Fig. 59 Installation outside of solid ceiling construction - concrete and installation frame E4, R5





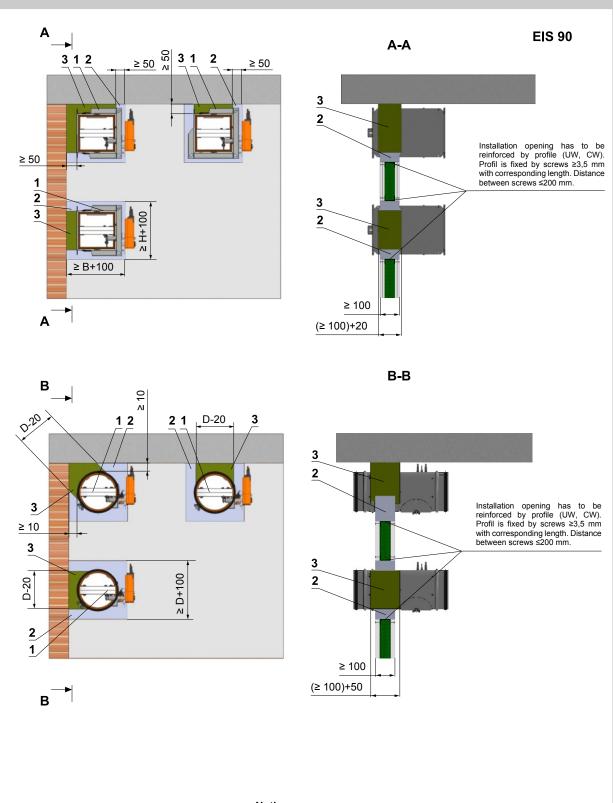
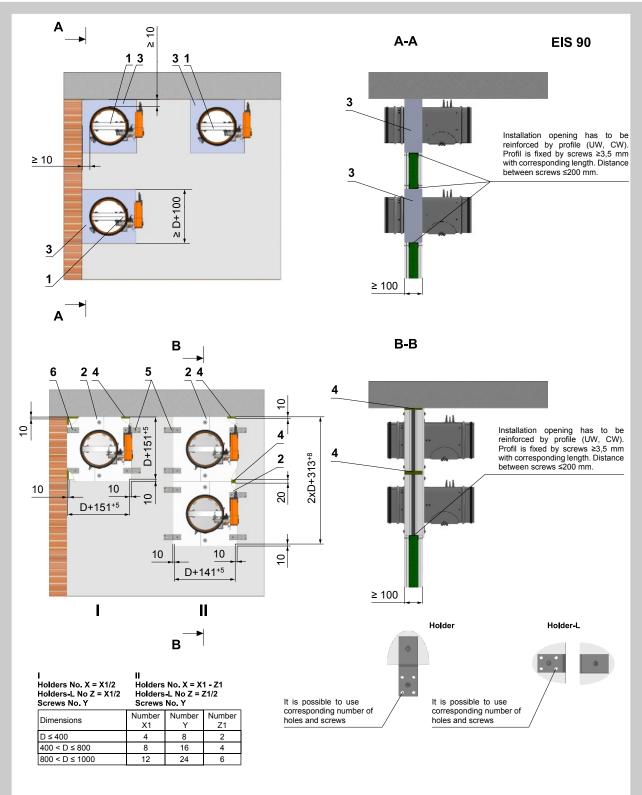

Fig. 60 Installation outside of solid ceiling construction - installation frame E6, R6 with cement lime plates

Fig. 61 Gypsum wall construction - mortar or gypsum

Fig. 63 Gypsum wall construction - installation next to wall, ceiling - mortar or gypsum and mineral wool

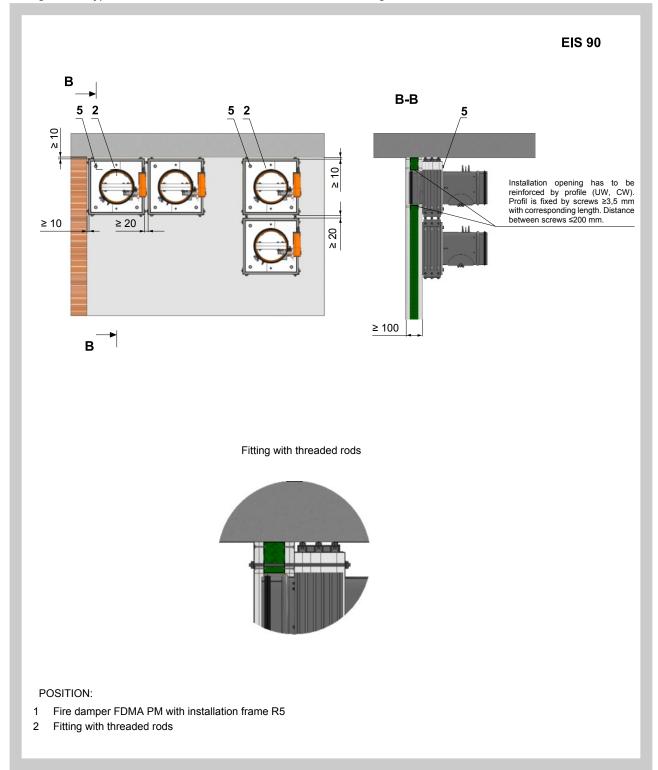
Notice:

Gap between damper and construction is filled by mortar or

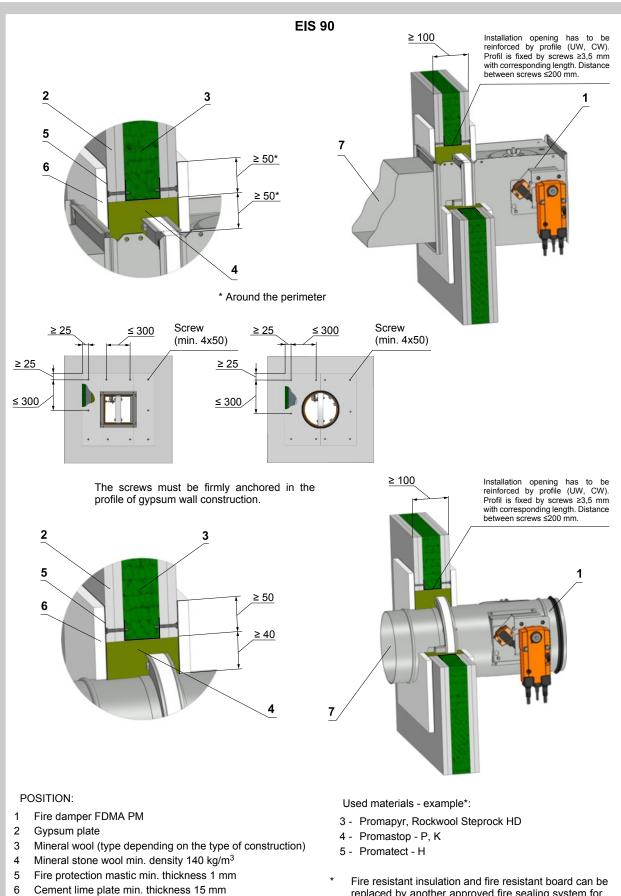

- gypsum and mineral wool Wool is fixed to damper body and construction by fire protection . mastic
- Mineral wool thickness = construction thickness + 20 mm or 50 mm
- Installation is valid for ceiling construction •

POSITION:

- Fire damper FDMA PM 1
- 2 Mortar or gypsum
- 3 Mineral stone wool min. density 140 kg/m³

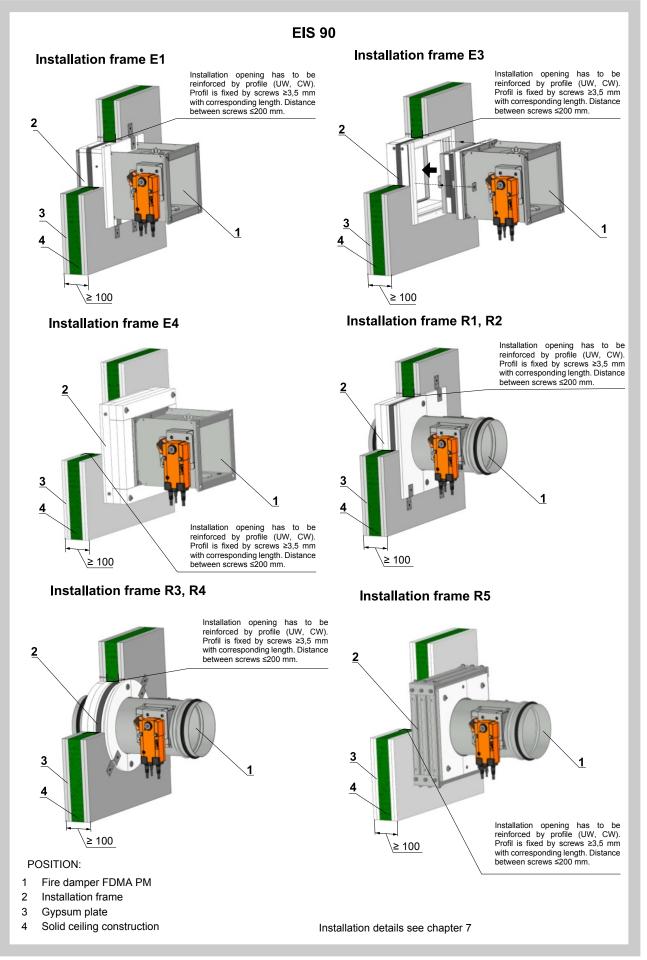

Fig. 64 Gypsum wall construction - installation next to wall, ceiling - mortar or gypsum and mineral wool Gypsum wall construction - installation next to wall, ceiling - installation frame R1, R2 and mineral wool

POSITION:

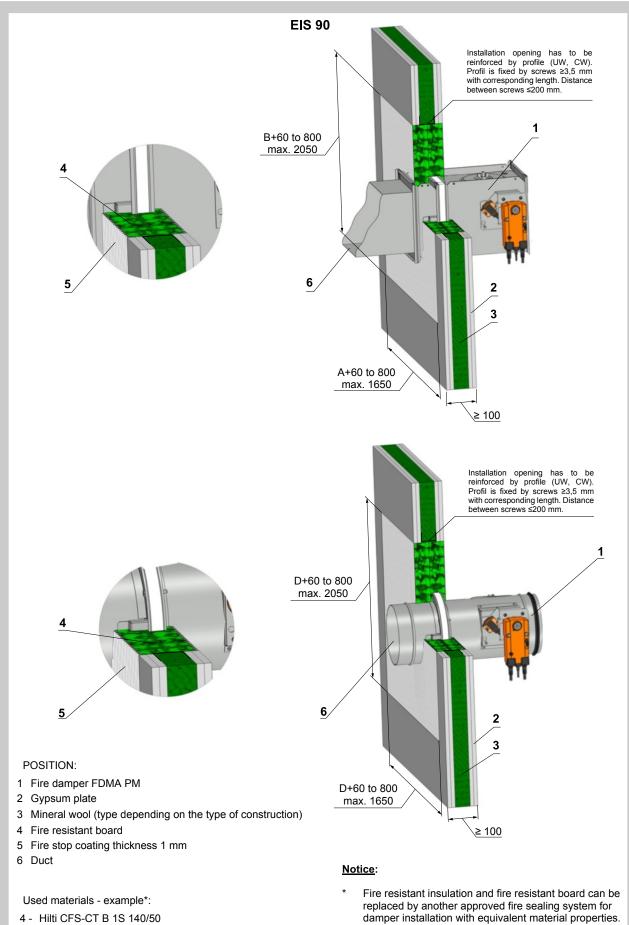

- 1 Fire damper FDMA PM
- 2 Fire damper FDMA PM with installation frame R1, R2
- 3 Mortar or gypsum
- 4 Mineral stone wool min. density 140 kg/m³
- 5 Holder
- 6 Holder L

- Notice:
 - Gap between frame and damper body and frame and construction must be filled by glue (PROMAT K84).
 - Wool is fixed to installation frame and construction by fire protection mastic.

Fig. 65 Gypsum wall construction - installation next to wall, ceiling - installation frame R5


Fig. 66 Gypsum wall construction - stuffing box, fire protection mastic and cement lime plate

- (min. density 870 kg/m³)
- 7 Duct


replaced by another approved fire sealing system for damper installation with equivalent material properties.

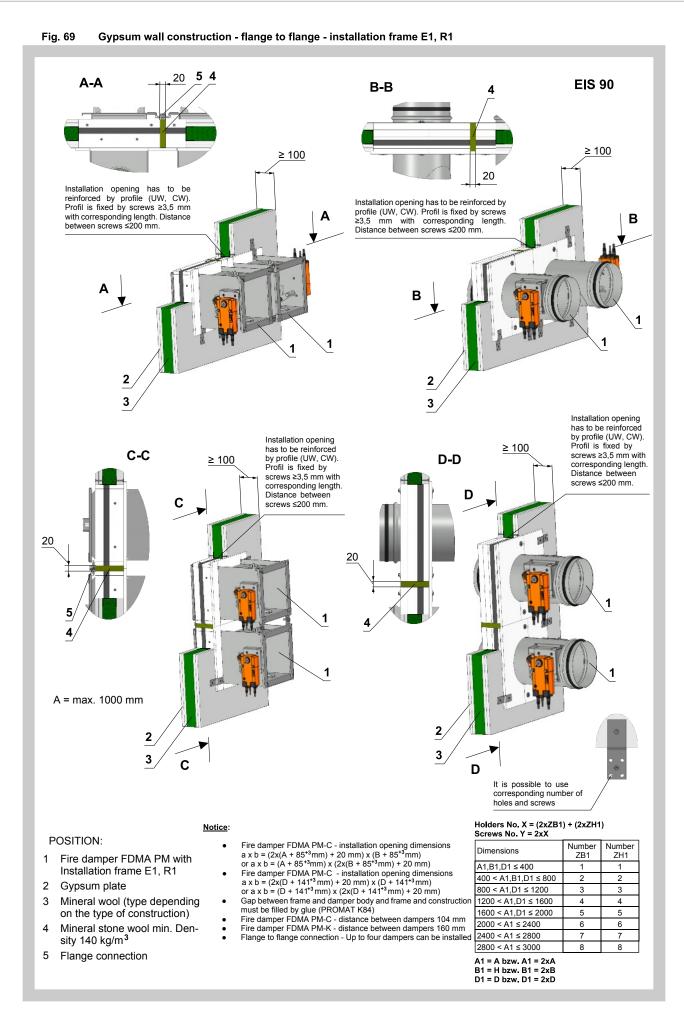
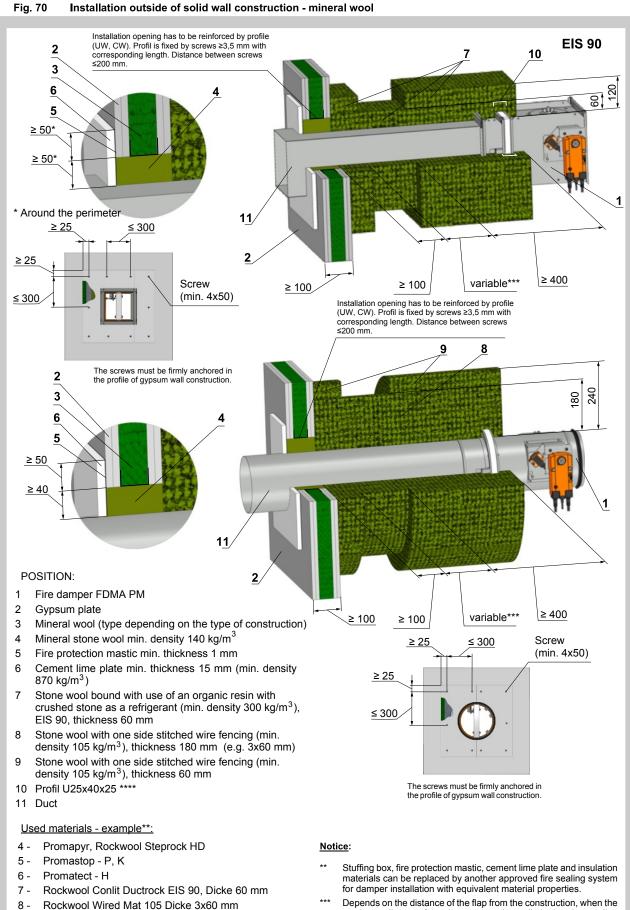


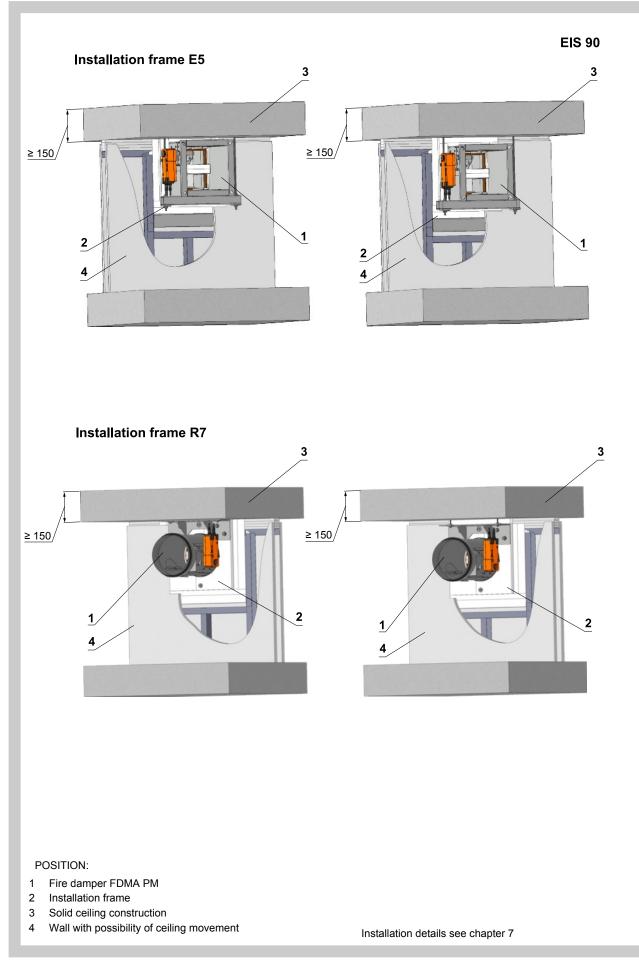
Fig. 68 **Gypsum wall construction - Weichschott**


ΜΛΝϽίκ[®]

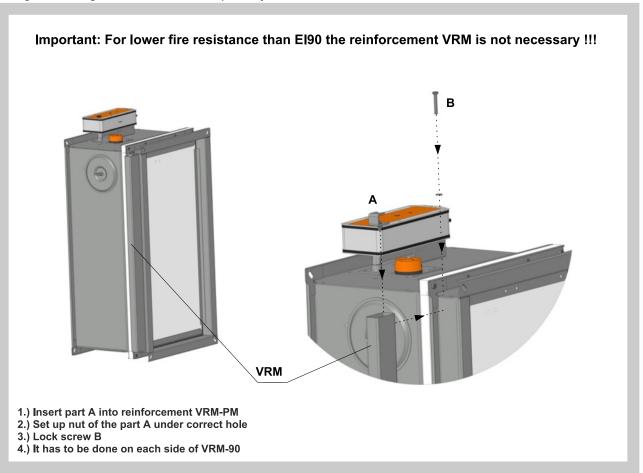
- 4 Hilti CFS-CT B 1S 140/50
- 5 Hilti CFS-CT

9 - Rockwool Wired Mat 105 Dicke 5000 mm

Installation details of wool layers see chapter 8


**** Installation of profile U25x40x25 see Fig.73

to EN 13366-1:2014.


maximum distance from the construct is not limited and according

to EN 15882-2 must use the required number of hinges according

Fig. 71 Gypsum wall construction - flexible ceiling (with possibility to move/to sag) - installation frame E5, R7

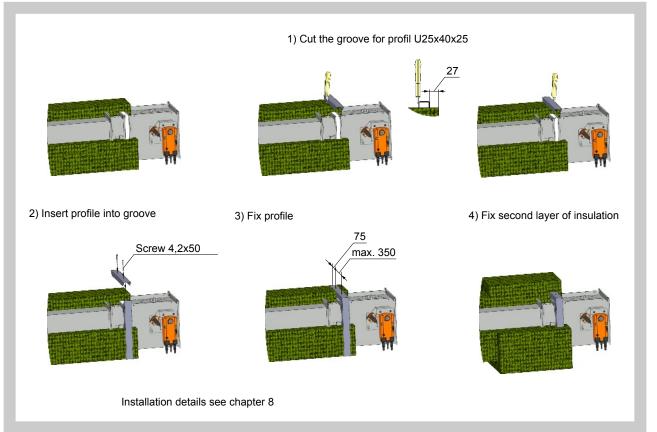
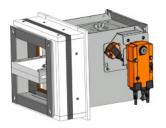


Fig. 72 Fixing of reinforcement to damper body VRM

NOTICE: For dampers with A ≥ 800 and damper placement outside wall construction is necessary to use reinforcement VRM-PM.

7. Installation frames

7.1. Rectangular dampers


Tab. 7.1.1.

Installation frame												
	Material	Installation type										
Туре		Solid wall constr.	Th. [mm]	Solid ceiling const.	Th. [mm]	Gypsum wall constr.	Th. [mm]	Outside solid wall con./solid ceiling con.	Th. [mm]	On solid wall constr./Solid ceiling constr.	Th. [mm]	
E1	Cement lime	\checkmark	≥100	\checkmark	≥150	\checkmark	≥100	-	-	-	-	
E2	Galvanized plate	\checkmark	≥100	\checkmark	≥150	-	-	-	-	-	-	
E3	Cement lime	-	-	-	-	\checkmark	≥100	-	-	-	-	
E4	Cement lime	\checkmark	≥100	√*)	≥150	-	-	Solid ceiling construction *)	≥150	\checkmark	≥100/ ≥150	
E5	Cement lime	-	-	-	-	√ **)	≥100	-	-	-	-	
E6	Cement lime	-	-	-	-	-	-	\checkmark	≥100/ ≥150	-	-	

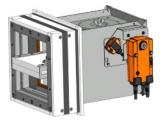
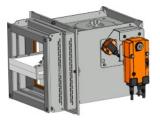
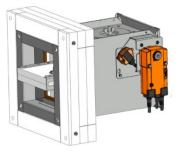
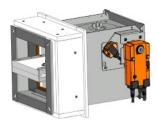

* With concrete** Ceiling with movement possibility

Fig. 74

Installation frame E1


Installation frame E3


Installation frame E5


Installation frame E2

Installation frame E4

Installation frame E6

7.2. Round dampers

Tab. 7.2.1

Installation frame												
	Material	Installation type										
Туре		Solid wall constr.	Th. [mm]	Solid ceiling const.	Th. [mm]	Gypsum wall constr.	Th. [mm]	Outside solid wall con./solid ceiling con.	Th. [mm]	On solid wall constr./Solid ceiling constr.	Th. [mm]	
R1	Cement lime	\checkmark	≥100	\checkmark	≥150	\checkmark	≥100	-	-	-	-	
R2	Cement lime	\checkmark	≥150	\checkmark	≥150	\checkmark	≥100	-	-	-	•	
R3	Cement lime	\checkmark	≥100	\checkmark	≥150	\checkmark	≥100	-	-	-	-	
R4	Cement lime	\checkmark	≥150	\checkmark	≥150	\checkmark	≥100	-	-	-	-	
R5	Cement lime	-	-	-	-	-	-	Solid ceiling construction *)	≥150	\checkmark	≥100	
R6	Cement lime	-	-	-	-	-	-	\checkmark	≥100/ ≥150	-	-	
R7	Cement lime	-	-	-	-	√ **)	≥100	-	-	-	-	

* With concrete** Ceiling with movement possibility

Fig. 75

Installation frame R1 pro D \leq 630 mm

Installation frame R2 pro D ≤ 630 mm

Installation frame R1 pro D > 710 mm

Installation frame R2 pro D > 710 mm

Fig. 76

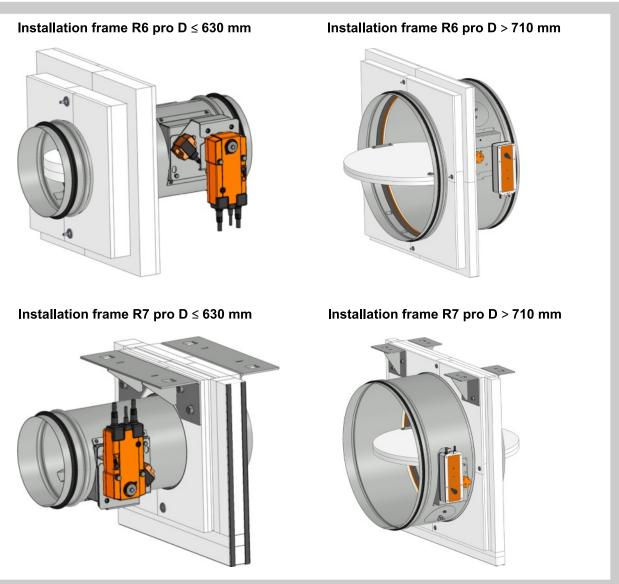
Installation frame R3 pro D \leq 630 mm

Installation frame R4 pro D ≤ 630 mm

Installation frame R3 pro D > 710 mm

Installation frame R4 pro D > 710 mm

Installation frame R5 pro D ≤ 630 mm



Installation frame R5 pro D > 710 mm

ΜΛΝϽίκ[®]

Fig. 77

Installation frame can be delivered mounted on the damper body or separately.

Installation frame E1 is suitable for:

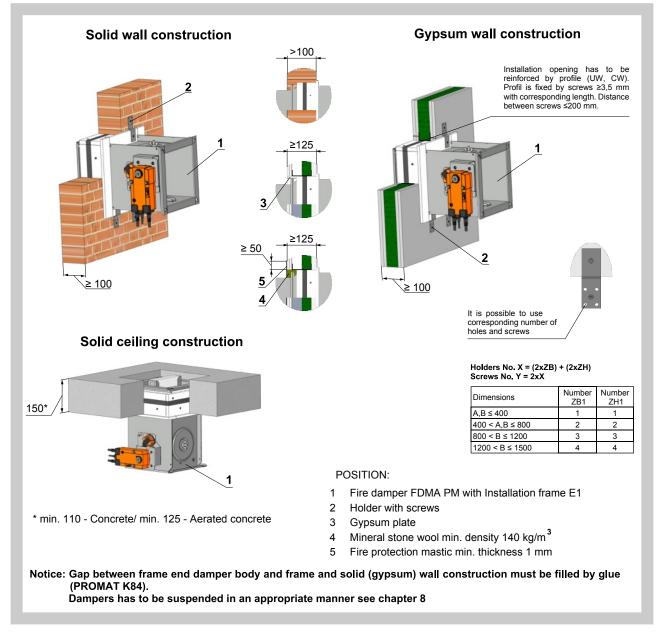
- Solid wall construction
- Gypsum wall construction
- Solid ceiling construction

On the inside and outside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and installation frame and between installation frame and wall construction.

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:


- Installation frame:
- Fasteners:

cement lime plates galvanized plate

Installation opening:

• a x b = (A + 105⁺³mm) x (B + 105⁺³mm)

Fig. 78 Installation frame E1

Installation frame E2 is suitable for:

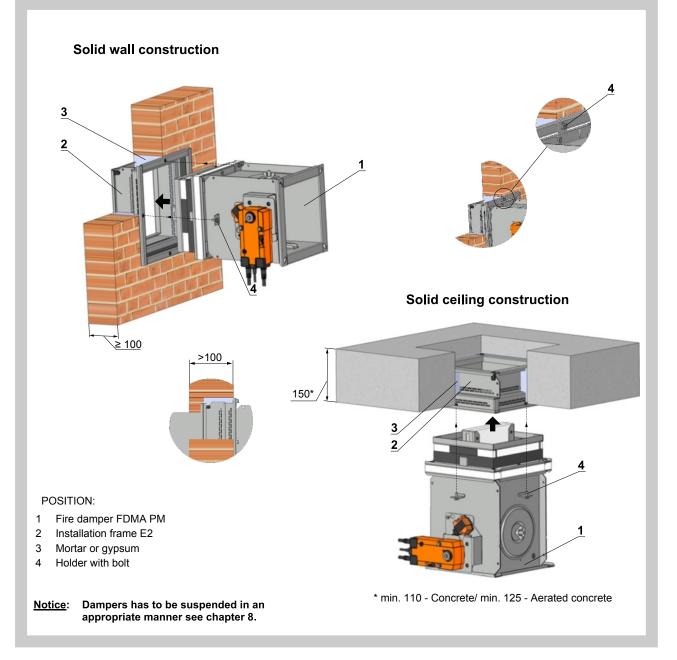
- Solid wall construction
- Solid ceiling construction

Damper is on the body equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and steel cartridge.

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:


Installation frame:Fasteners:

cement lime plates and galvanized plate galvanized plate

Installation opening:

• $a \times b = (A + 100^{+3} \text{mm}) \times (B + 100^{+3} \text{mm})$

Fig. 79 Installation frame E2

Installation frame E3 is suitable for:

• Gypsum wall construction

Damper is on the body equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and cement lime cartridge.

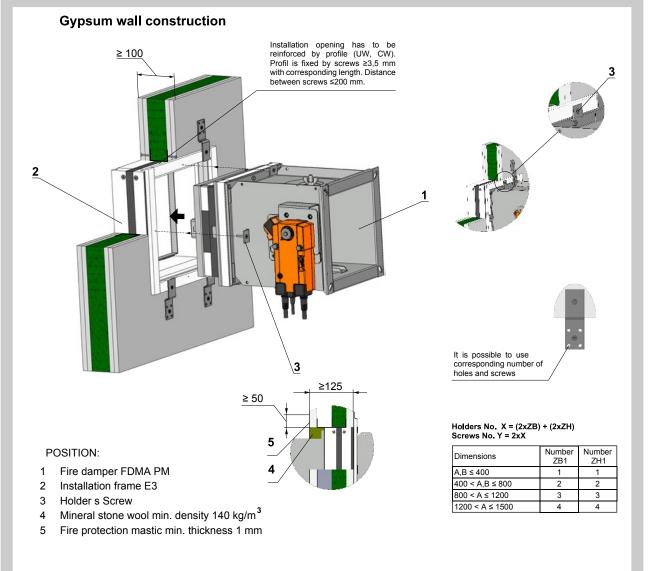
On the outside is cement lime cartridge equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between cement lime cartridge and construction.

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:

• Installation frame:


Fasteners:

cement lime plates galvanized plate

Installation opening:

• a x b = (A + 103⁺³mm) x (B + 103⁺³mm)

Fig. 80 Installation frame E3

Notice: Gap between frame and solid (gypsum) wall construction must be filled by glue (PROMAT K84). Dampers has to be suspended in an appropriate manner see chapter 8.

Installation frame E4 is suitable for:

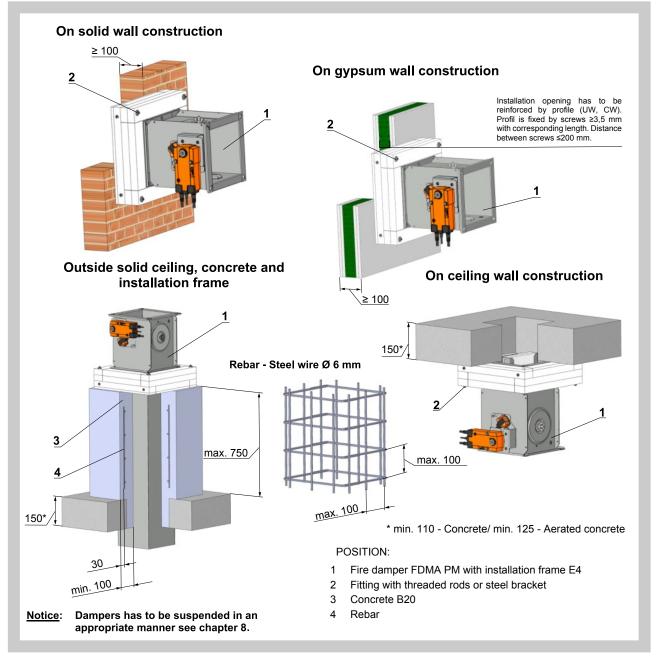
- Instalaci on solid wall/ceiling construction
- Installation on gypsum wall construction
- Instalaci outside solid ceiling constructions with concrete

On the inside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between installation frame and damper body.

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:


- Installation frame: cement lime plates
- Fasteners:

galvanized plate

Installation opening:

- $a x b = (A + 5^{+3}mm) x (B + 5^{+3}mm)$
- a x b = (A + 100⁺³mm) x (B + 100⁺³mm) installation with concrete

Fig. 81 Installation frame E4

Installation frame E5

Installation frame E5 is suitable for gypsum wall construction with ceiling movement possibility. Distance of movement "x".

On the inside and outside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and installation frame and between installation frame and wall construction.

Installation:

- Damper position:
- Directly on the ceiling
- In distance from ceiling max. 80 mm

Material:

•

Installation frame:

Fasteners:

: cement lime plates galvanized plate

Notice:

• For ceiling movement ≥10 mm

Fig. 82 Installation frame E5

Installation frame E6

Installation frame E6 is suitable for:

• Installation outside solid wall/ceiling construction with cement lime plates

On the inside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between installation frame and damper body.

Material:

- Installation frame:
- Fasteners:

cement lime plates galvanized plate

Installation opening:

• a x b = (A + 105⁺³mm) x (B + 105⁺³mm)

Installation frame R1, R2

Installation frames R1, R2 are suitable for:

- Solid wall construction
- Gypsum wall construction
- Solid ceiling construction

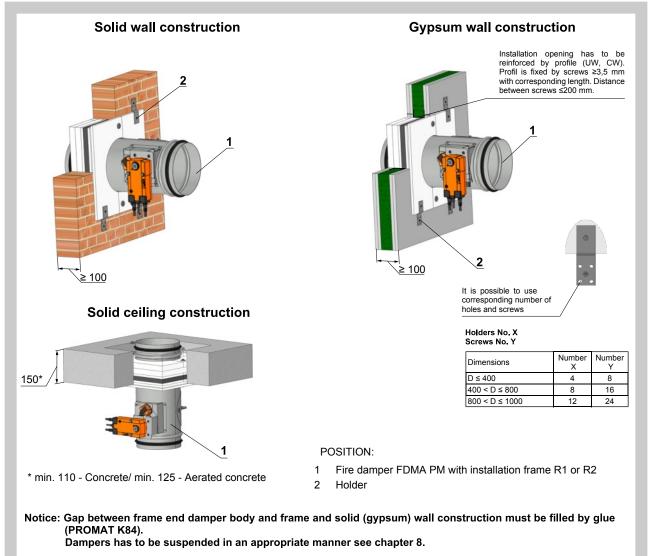
On the inside and outside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and installation frame and between installation frame and wall construction.

Installation frame R1 - solid wall/gypsum wall th. 100mm or solid ceiling th. 150 mm Installation frame R2 - solid wall/gypsum wall th. 150mm or solid ceiling th. 150 mm

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:


- Installation frame:
 - Fasteners:

cement lime plates galvanized plate

Installation opening:

• a x b = (D + 141⁺³mm) x (D + 141⁺³mm)

Fig. 84 Installation frame R1, R2

Installation frame R3, R4

Installation frame R3, R4 are suitable for:

- Solid wall construction
- Gypsum wall construction
- Solid ceiling construction

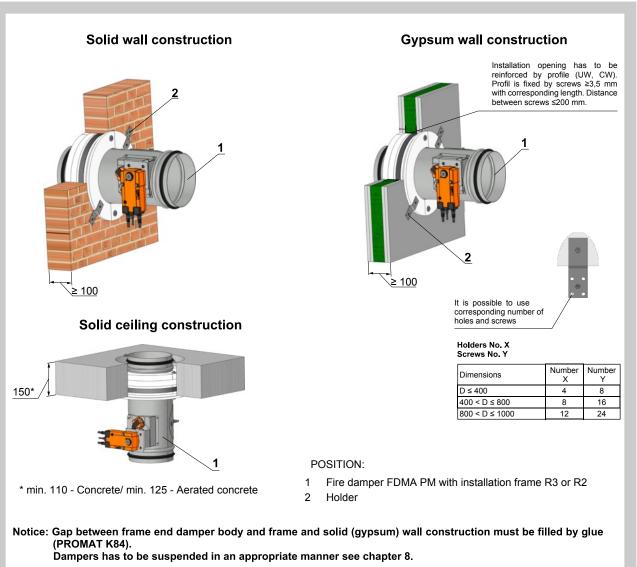
On the inside and outside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and installation frame and between installation frame and wall construction.

Installation frame R3 - solid wall/gypsum wall th. 100mm or solid ceiling th. 150 mm Installation frame R4 - solid wall/gypsum wall th. 150mm or solid ceiling th. 150 mm

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:


Installation frame:Fasteners:

cement lime plates galvanized plate

Installation opening:

• $d = (D + 111^{+3}mm)$

Fig. 85 Installation frame R3, R4

Installation frame R5

Installation frame R5 is suitable for:

- Instalaci on solid wall/ceiling construction
- Installation on gypsum wall construction
- Instalaci outside solid ceiling constructions with concrete

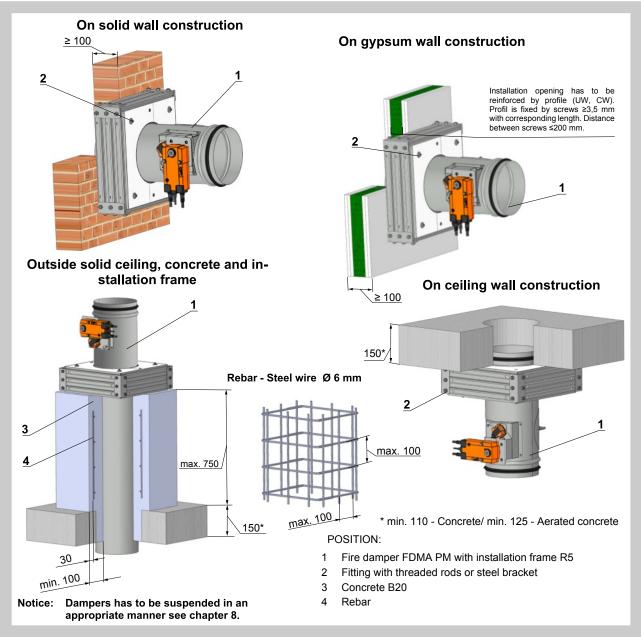
On the inside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between installation frame and damper body.

Installation:

• Gypsum wall construction has to be installed according manufacture requirements.

Material:

• Installation frame:


cement lime plates and galvanized plate galvanized plate

Fasteners:

Installation opening:

- d = (D + 10⁺³mm)
- $d = (D + 100^{+3}mm)$ installation with concrete

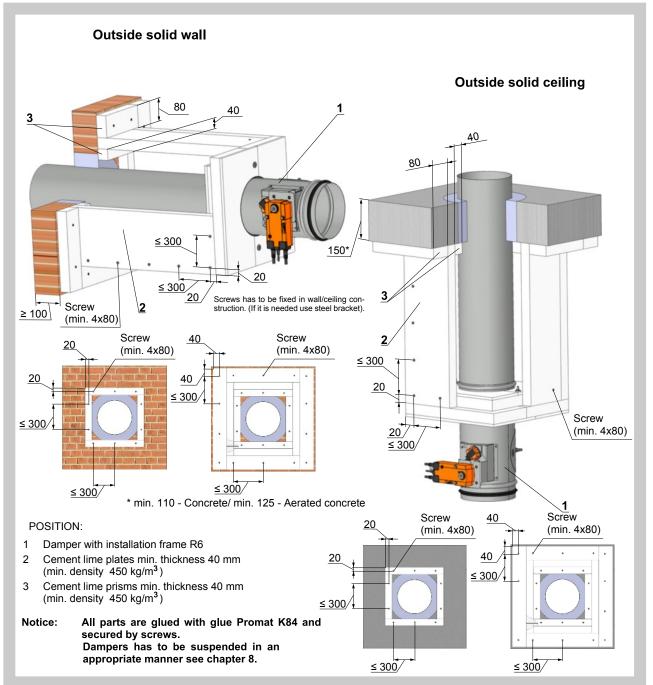
Fig. 86 Installation frame R5

Installation frame R6

Installation frame R6 is suitable for:

• Installation outside solid wall/ceiling construction with cement lime plates

On the inside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between installation frame and damper body.


Material:

- Installation frame:
- Fasteners:

cement lime plates galvanized plate

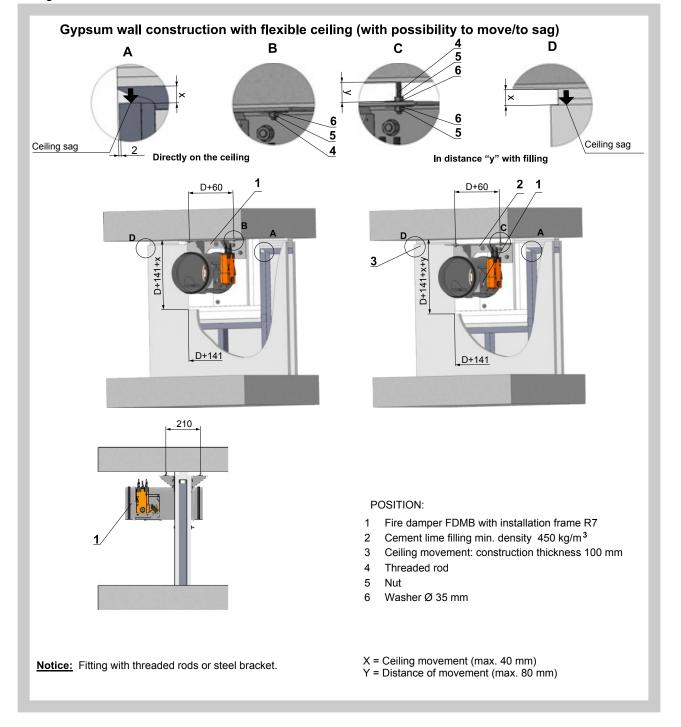
- Installation opening:
- d = (D +100⁺³mm)

Installation frame R7

Installation frame R7 is suitable for gypsum wall construction with ceiling movement possibility. Distance of movement "x".

On the inside and outside is installation frame equipped by intumescent sealing. It enlarges its capacity and air proofs the gap between damper body and installation frame and between installation frame and wall construction.

Installation:


- Damper position:
- Directly on the ceiling
- In distance from ceiling max. 80 mm •

Material:

•

- Installation frame: Fasteners:
- cement lime plates galvanized plate
- Notice:
- For ceiling movement ≥10 mm

Fig. 88 Installation frame R7

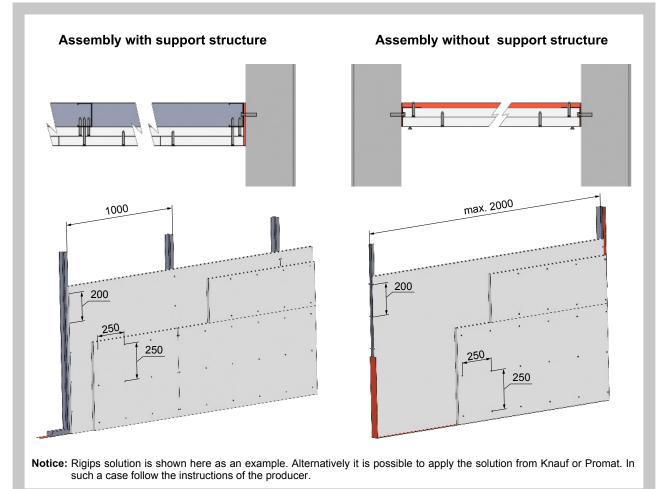
8. Thin shaft walls

Thin shaft wall description

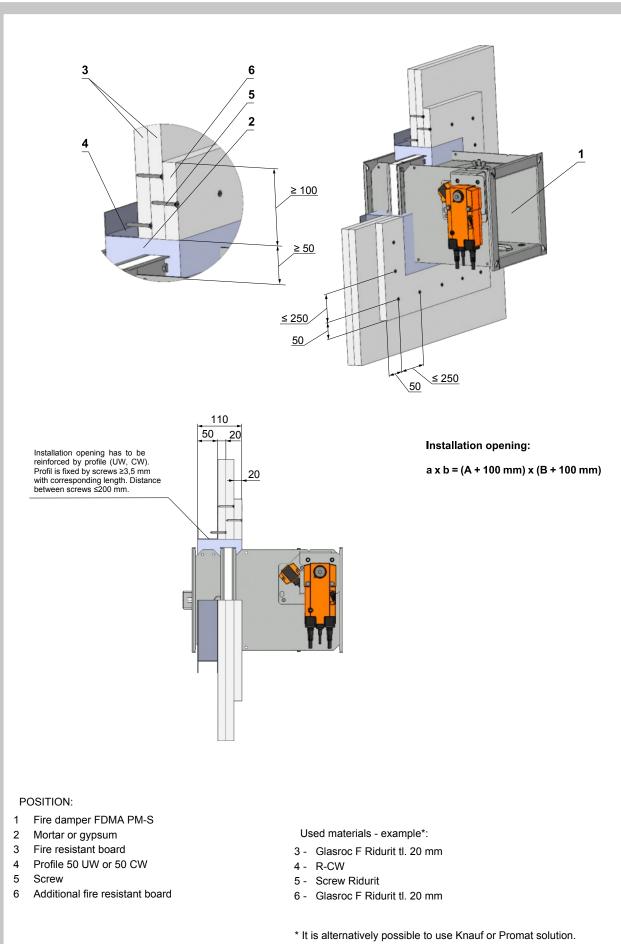
Shaft wall is a vertical, non-bearing partition construction meeting the double-sided fire requirements. The shaft wall can be mounted only from one side. No mineral insulation is used in the construction.

First of all, the shaft wall structure must be laid out. Apart from other vertical constructions, the perimeter sections must be fitted with connection sealing made from A1 or A2 fire reaction materials (for instance floor strips Orsil N/PP). The perimeter sections must be anchored using steel plugs \emptyset 6 mm (for example DN6 or ZHOP) with 500 mm span.

Sheathing is carried out using two layers of Glasroc F boards Ridurit with 20 mm thickness, the boards are oriented horizontally. First sheathing layer is fixed with TN 212 screws in spacing 200mm to the support structure. The boards are mounted to tight butt joints without need of cementing. The second sheathing layer is screwed to the first sheathing layer using screws Rodurit in square net 250 mm. Reset of joints of the first and second layer of Ridurit sheathing is set to 600 mm vertically and 300 mm horizontally.


Assembly with support structure

Vertical intermediate R-CW sections are fixed in 1000 mm layout spacing between R-UW sections and vertical perimeter R-CW sections.


Assembly without support structure

Maximum width of the shaft wall is 2 metres in this case (board length). Steel squares made from steel galvanized plate metal 40/20/1 mm are used as perimeter sections, they are anchored to bearing wall using \emptyset 6 mm steel plugs (for example DN6 or ZHOP) with 500 mm spacing.

Fig. 89

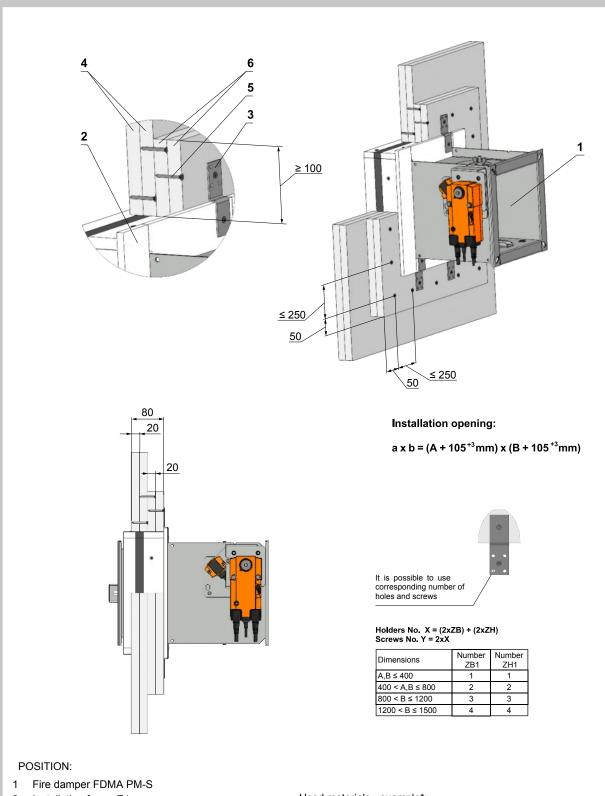
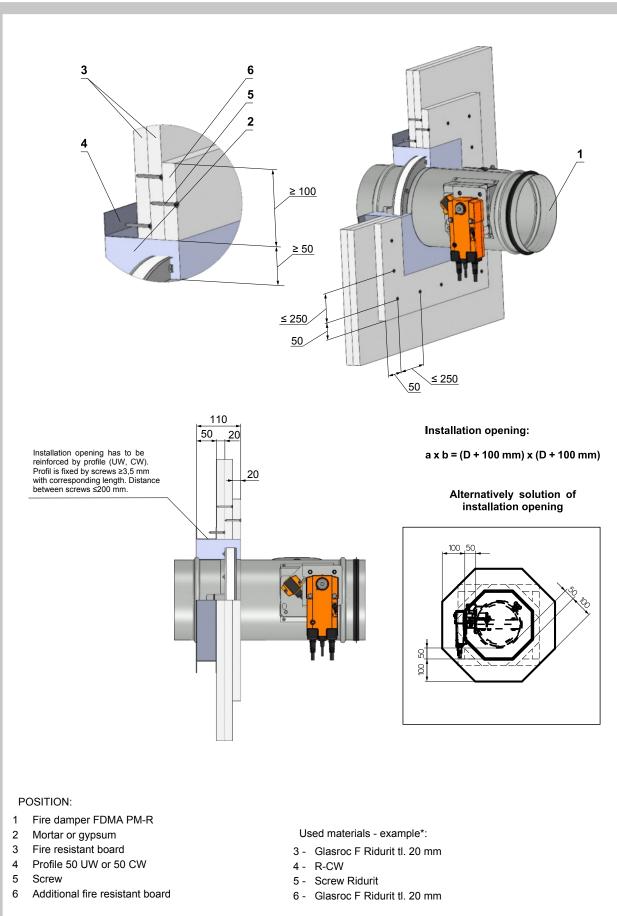


Fig. 90 Thin shaft wall - mortar or gypsum - RECTANGULAR DAMPER

Fig. 91 Thin shaft wall - Installation frame E1 - RECTANGULAR DAMPER

ΜΛΝϽίκ[®]

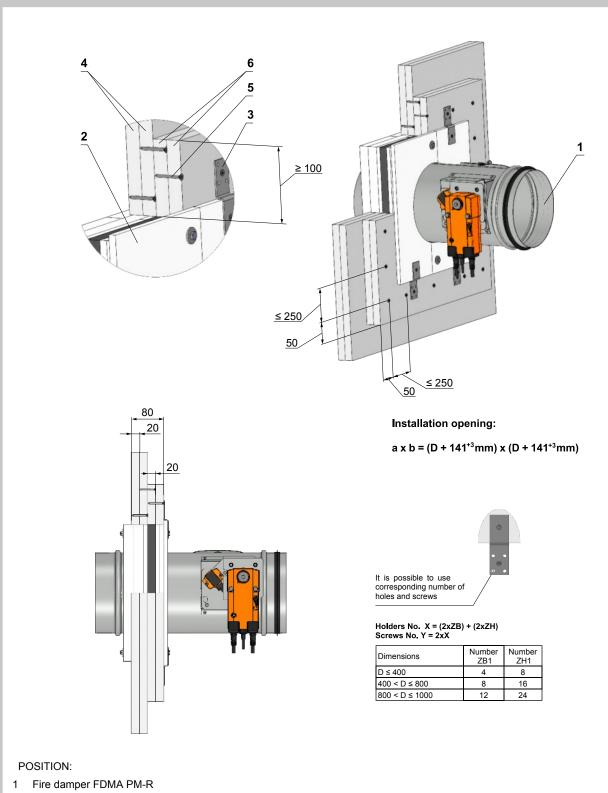
- 2 Installation frame E1
- 3 Holder (including in installation frame E1 packing)
- 4 Fire resistant board
- 5 Screw
- 6 Additional fire resistant board


Used materials - example*:

- 4 Glasroc F Ridurit tl. 20 mm
- 5 Screw Ridurit
- 6 Glasroc F Ridurit tl. 20 mm

* It is alternatively possible to use Knauf or Promat solution.

Notice: Gap between frame and thin shaft wall construction must be filled by glue (PROMAT K84). Dampers has to be suspended in an appropriate manner see chapter 11.

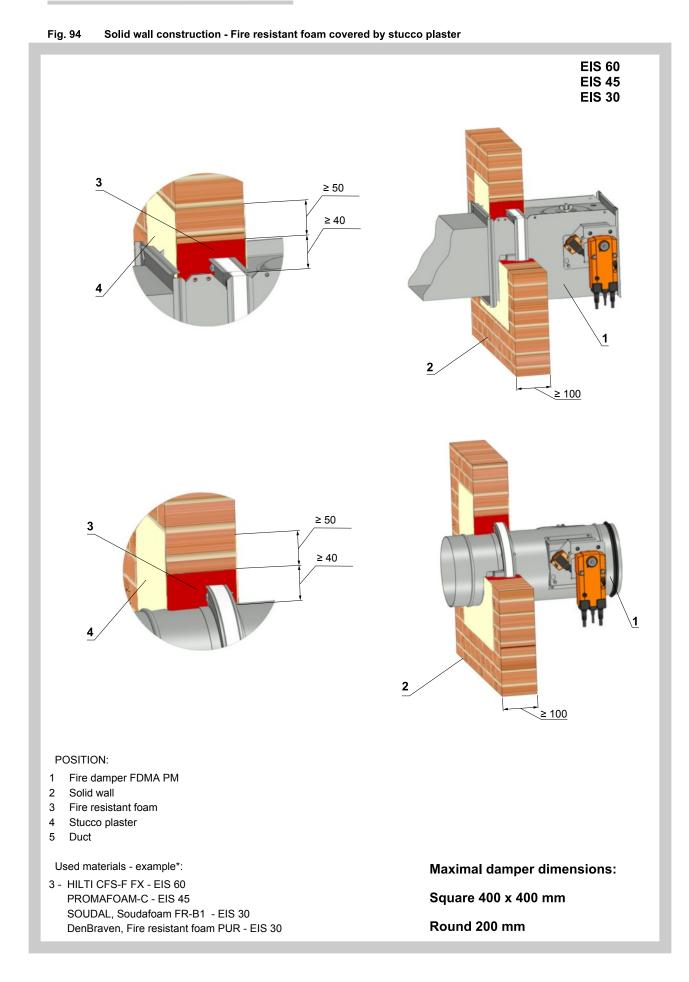

Fig. 92 Thin shaft wall - mortar or gypsum - ROUND DAMPER

* It is alternatively possible to use Knauf or Promat solution.

Fig. 93 Thin shaft wall - Installation frame R1 - ROUND DAMPER

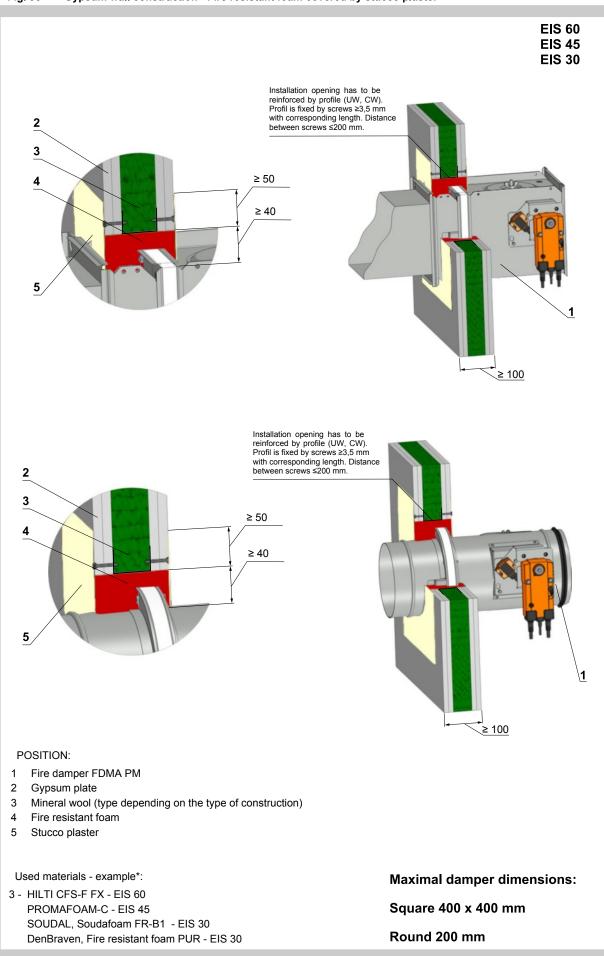
ΜΛΝϽίκ[®]

- 2 Installation frame R1
- 3 Holder (including in installation frame R1 packing)
- 4 Fire resistant board
- 5 Screw
- 6 Additional fire resistant board


Used materials - example*:

- 4 Glasroc F Ridurit tl. 20 mm
- 5 Screw Ridurit
- 6 Glasroc F Ridurit tl. 20 mm

* Alternativně je možno použít řešení od firem Knauf nebo Promat.


Notice: Gap between frame and thin shaft wall construction must be filled by glue (PROMAT K84). Dampers has to be suspended in an appropriate manner see chapter 11.

9. Installation in Fire resistant foam

Fig. 95 Gypsum wall construction - Fire resistant foam covered by stucco plaster

10. Installation outside of wall construction EIS60

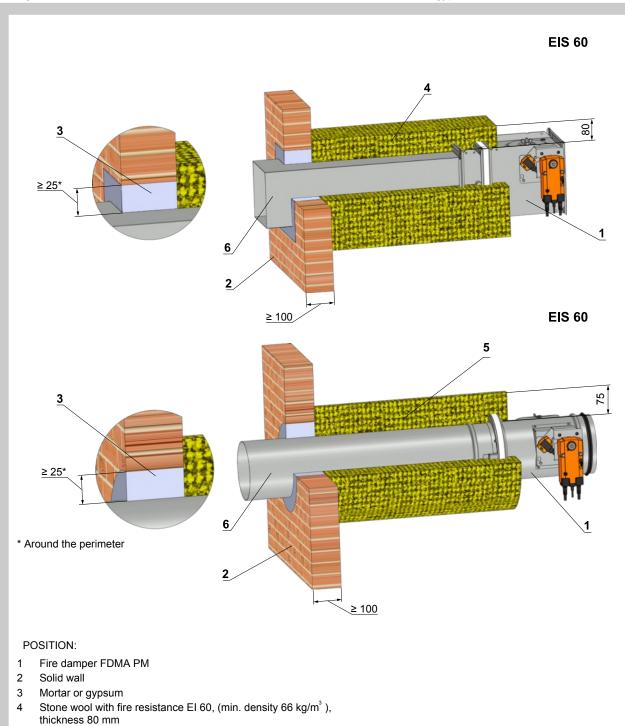


Fig. 96 Installation outside of solid wall construction - mineral wool - mortar or gypsum

thickness 75 mm

6 Duct

5

Used materials - example**:

- 4 Isover Ultimate Protect SLAB 4.0, th. 80 mm ALU1
- 5 Isover Ultimate Protect Wired MAT 4.0, th. 75 mm ALU1

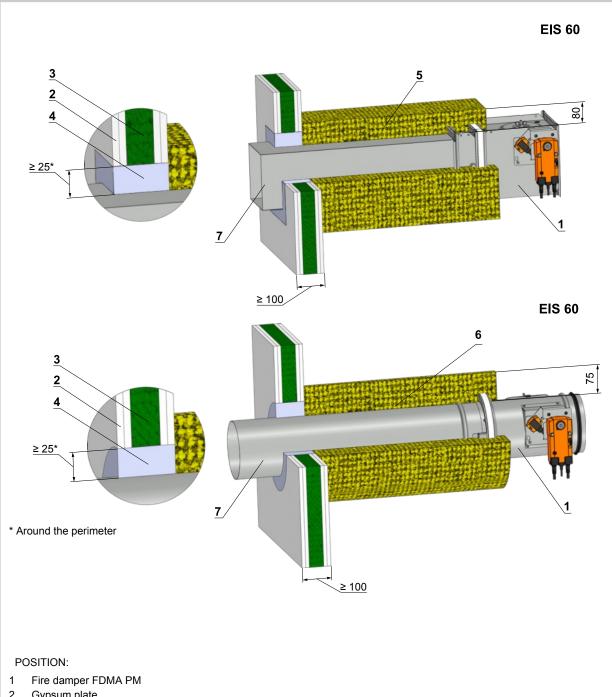
Stone wool with fire resistance EI 60, (min. density 66 kg/m 3),

Installation details of wool layers see chapter 11

Notice:

*** Stuffing box, fire protection mastic, cement lime plate and insulation materials can be replaced by another approved fire sealing system for damper installation with equivalent material properties.

The maximum distance from the construction of fire dampers is not limited and according to EN 15882-2 must use the required number of hinges according to EN 13366-1:2014.



EIS 60 5 4 3 8 <u>≥ 50</u>* ≥ 25 1 <u>7</u> 2 ≥ 100 **EIS 60** 6 5 75 <u>≥ 5</u>0* ≥ 25' 7 1 * Around the perimeter 2 ≥ 100 POSITION: Fire damper FDMA PM 1 2 Solid wall 3 Stuffing box (mineral stone wool min. density 140 kg/m³) 4 Fire protection mastic min. thickness 1 mm 5 Stone wool with fire resistance EI 60, (min. density 66 kg/m³), thickness 80 mm Stone wool with fire resistance EI 60, (min. density 66 kg/m³), 6 thickness 75 mm 7 Duct Used materials - example**: Notice: 3 - Promapyr, Rockwool Steprock HD Stuffing box, fire protection mastic, cement lime 4 - Promastop - P, K plate and insulation materials can be replaced by 5 - Isover Ultimate Protect SLAB 4.0, th. 80 mm ALU1 another approved fire sealing system for damper 6 - Isover Ultimate Protect Wired MAT 4.0, th. 75 mm ALU1 installation with equivalent material properties.

Fig. 97 Installation outside of solid wall construction - mineral wool - stone wool - fire protection mastic

The maximum distance from the construction of fire dampers is not limited and according to EN 15882-2 must use the required number of hinges according to EN 13366-1:2014.

Installation details of wool layers see chapter 11

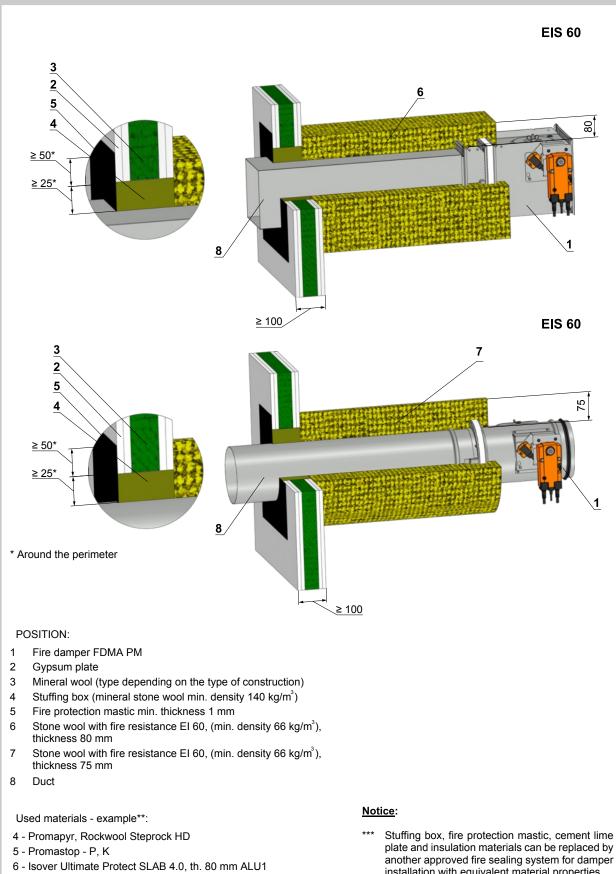
Fig. 98 Installation outside of gypsum wall construction - mineral wool - mortar or gypsum

- 2 Gypsum plate
- 3 Mineral wool (type depending on the type of construction)
- 4 Mortar or gypsum
- 5 Stone wool with fire resistance EI 60, (min. density 66 kg/m³), thickness 80 mm
- Stone wool with fire resistance EI 60, (min. density 66 kg/m 3), 6 thickness 75 mm
- 7 Duct

Used materials - example**:

- 5 Isover Ultimate Protect SLAB 4.0, th. 80 mm ALU1
- 6 Isover Ultimate Protect Wired MAT 4.0, th. 75 mm ALU1

Installation details of wool layers see chapter 11


Notice:

*** Stuffing box, fire protection mastic, cement lime plate and insulation materials can be replaced by another approved fire sealing system for damper installation with equivalent material properties.

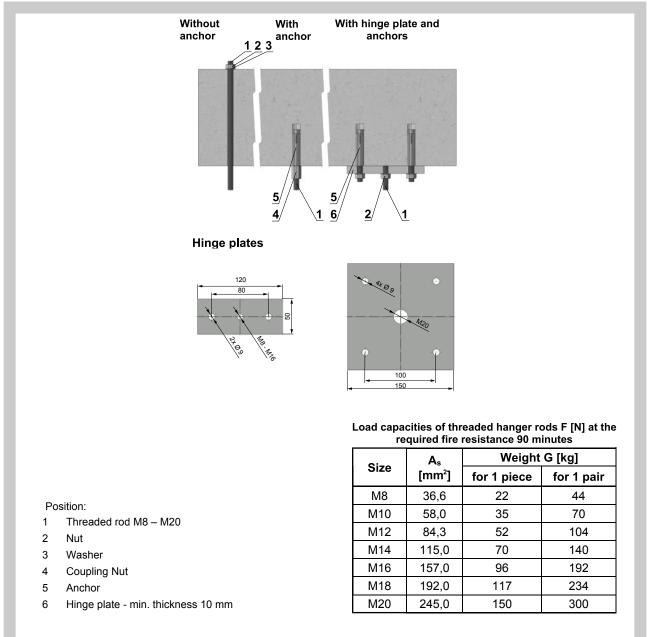
ΜΛΝϽίκ[®]

The maximum distance from the construction of fire dampers is not limited and according to EN 15882-2 must use the required number of hinges according to EN 13366-1:2014.

Fig. 99 Installation outside of gypsum wall construction - mineral wool - stone wool - fire protection mastic

Installation details of wool layers see chapter 11

7 - Isover Ultimate Protect Wired MAT 4.0, th. 75 mm ALU1


plate and insulation materials can be replaced by another approved fire sealing system for damper installation with equivalent material properties.

The maximum distance from the construction of fire dampers is not limited and according to EN 15882-2 must use the required number of hinges according to EN 13366-1:2014.

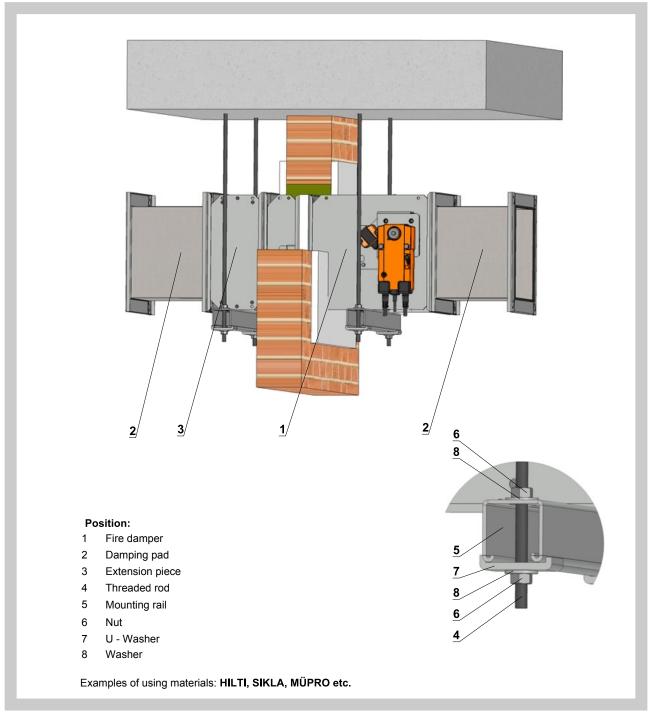
11. Suspension systems

11.1. Mounting to the ceiling wall

Fig. 100 Mounting to the ceiling wall

11.2. Horizontal installation

Fire dampers can be suspended by using threaded rods and a mounting profiles. Load the suspension system depend on weight of the fire damper.

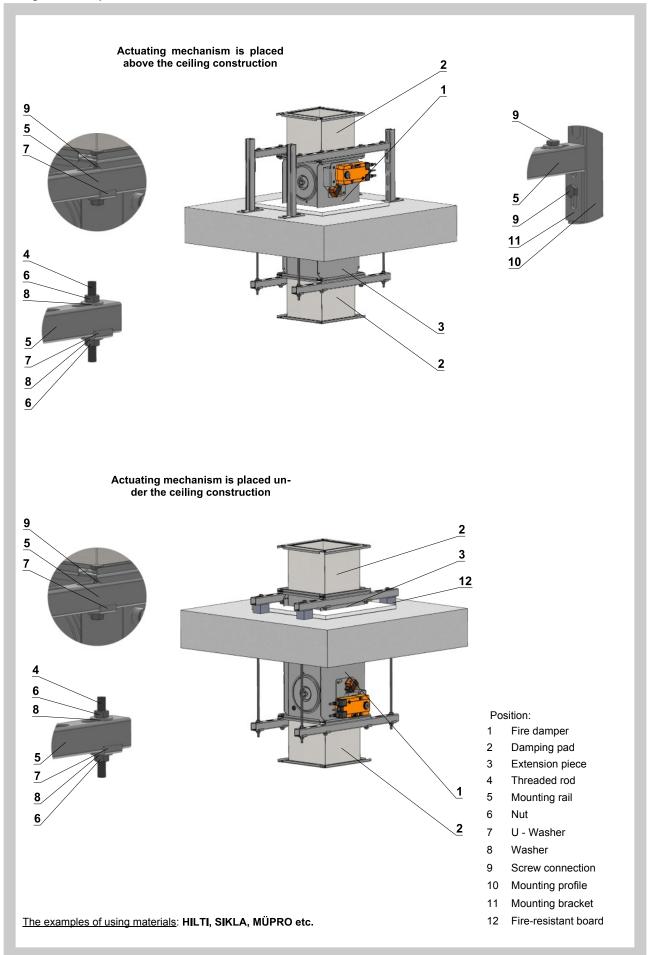

Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rods longer than 1,5 m require fire-resistant insulation.

Threaded rod fixing to the ceiling construction.

Fig. 101 Suspension - horizontal duct

11.3. Vertical installation


Fire dampers can be suspended by using threaded rods and a mounting profiles. Load the suspension system depend on weight of the fire damper.

Damper can be suspended from the ceiling construction or supported above the ceiling construction.

Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rods longer than 1,5 m require fire-resistant insulation.

Fig. 102 Suspension - vertical duct

11.4. Rectangular fire damper suspension on the wall - horizontal installation

Duct between fire damper and fire separating construction can be suspended by using threaded rods and mounting profiles. Load the suspension system depend on weight of the fire damper and duct system.

Max. length between two suspension systems is 1500 mm.

Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rods longer than 1,5 m require fire-resistant insulation.

If the threaded rod is located inside the duct insulation, distance between threaded rod and duct is max 30 mm. If the treaded rod is located outside the duct isolation, distance between threaded rod and isolation is max. 40 mm. Thickness of the insulation under mounting profile must be min. 30 mm.

Threaded rod fixing to the ceiling construction - see fig. 100

The insulation boards are fastened to the duct by weld pins. Distance between weld pins, distance between weld pins and flanges is dependent on the materials. For more information see documentation of insulation manufacturer.

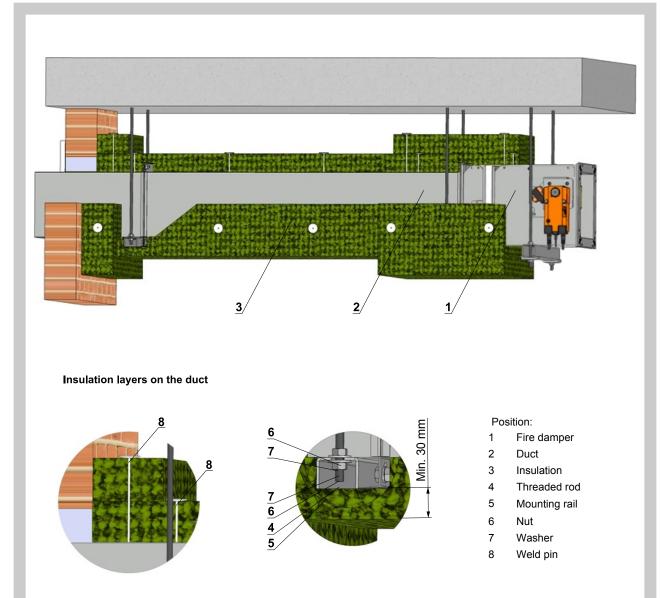
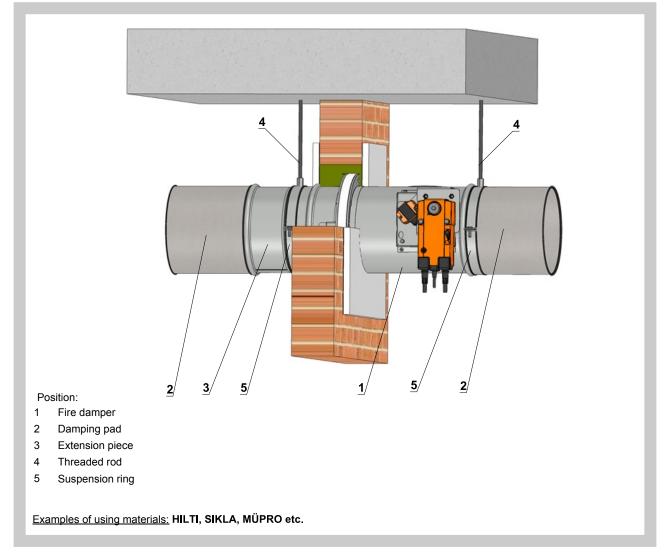


Fig. 103 Rectangular fire damper suspension on the wall - horizontal installation

11.5. Horizontal installation

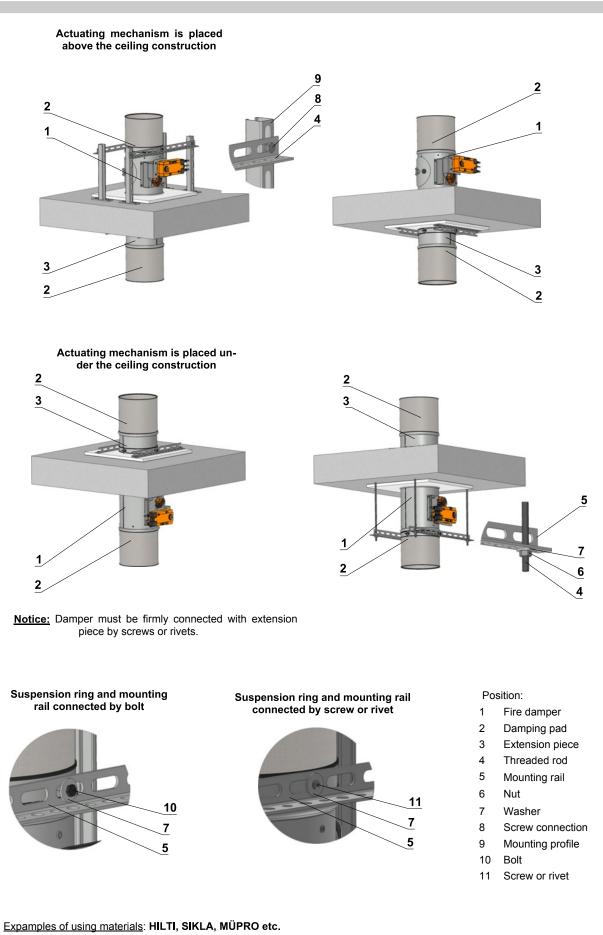

Fire dampers can be suspended by using threaded rods and a mounting profiles. Load the suspension system depend on weight of the fire damper.

Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rods longer than 1,5 m require fire-resistant insulation.

Threaded rod fixing to the ceiling construction - see fig. 100

11.6. Vertical installation

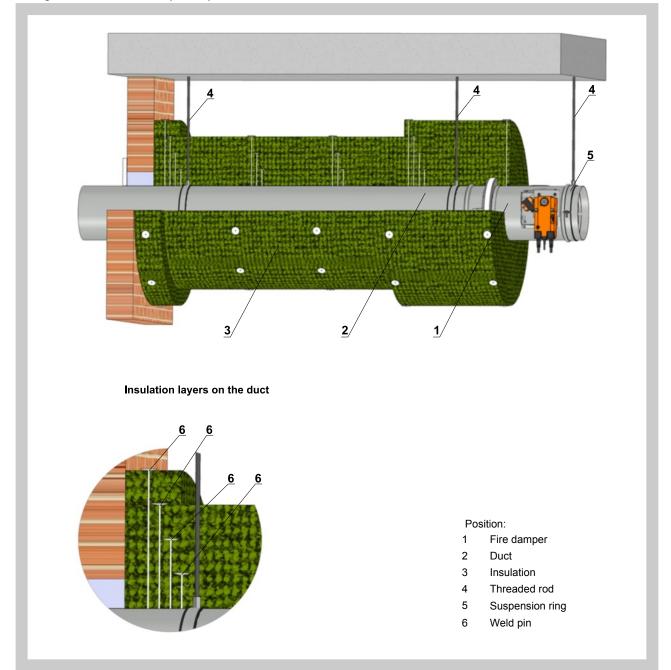

Fire dampers can be suspended by using threaded rods and a mounting profiles. Load the suspension system depend on weight of the fire damper.

Damper can be suspended from the ceiling construction or supported above the ceiling construction. Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rods longer than 1,5 m require fire-resistant insulation.

Fig. 105 Suspension - vertical duct

11.7. Round fire damper suspension on the wall - horizontal installation


Duct between fire damper and fire separating construction can be suspended by using threaded rods and suspension rings. Load the suspension system depend on weight of the fire damper and duct system.

Max. length between two suspension systems is 1500 mm.

Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded.

Threaded rod fixing to the ceiling construction

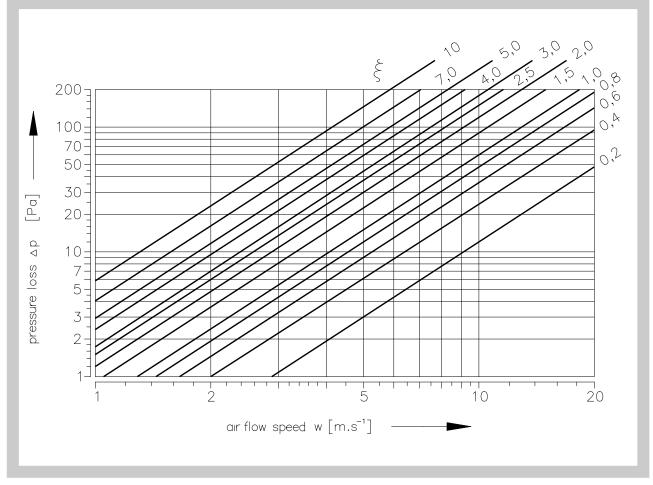
The insulation boards are fastened to the duct by weld pins. Distance between weld pins, distance between weld pins and flanges is dependent on the materials. For more information see documentation of insulation manufacturer.

Fig. 106 Round fire damper suspension on the wall - horizontal installation

ΜΛΝϽίκ[®]

III. TECHNICAL DATA

12. Pressure loss


12.1. Pressure loss calculation

$$\Delta p = \xi \circ \rho \cdot \frac{w^2}{2}$$

∆p	[Pa]	presure loss
W	[m.s ⁻¹]	air flow speed in nominal damper section
ρ	[kg.m³]	air density
ξ	[-]	coefficient of local pressure loss for the nominal damper section (see Tab. 13.1.1. a Tab. 13.2.1.)

12.2. Determination of pressure loss by using diagram ρ = 1,2 kg.m³

13. Coefficient of local pressure loss

13.1. Coefficient of local pressure loss ξ (-) - square dampers

							Α						
В	180	200	225	250	280	300	315	355	400	450	500	550	560
180	1,992	1,864	1,795	1,721	1,636	1,575	1,502	1,440	1,387	1,342	1,308	1,290	1,275
200	1,580	1,477	1,417	1,363	1,288	1,244	1,186	1,136	1,094	1,059	1,030	1,017	1,005
225	1,288	1,161	1,052	1,031	1,003	0,972	0,938	0,892	0,847	0,833	0,806	0,783	0,774
250	1,042	0,969	0,934	0,902	0,852	0,807	0,776	0,741	0,715	0,691	0,673	0,661	0,655
280	0,938	0,911	0,873	0,842	0,801	0,752	0,710	0,662	0,641	0,623	0,612	0,605	0,591
300	0,868	0,821	0,789	0,754	0,710	0,668	0,621	0,594	0,582	0,551	0,543	0,538	0,535
315	0,740	0,690	0,667	0,639	0,606	0,570	0,548	0,524	0,503	0,486	0,473	0,464	0,460
355	0,638	0,595	0,568	0,545	0,518	0,492	0,472	0,450	0,433	0,418	0,406	0,399	0,395
400	0,561	0,522	0,498	0,479	0,453	0,436	0,413	0,395	0,378	0,366	0,355	0,349	0,345
450	0,500	0,465	0,446	0,429	0,408	0,384	0,367	0,351	0,337	0,325	0,315	0,313	0,307
500	0,456	0,423	0,407	0,394	0,369	0,352	0,334	0,319	0,306	0,296	0,287	0,284	0,280
550	0,436	0,404	0,388	0,374	0,352	0,330	0,313	0,304	0,288	0,277	0,275	0,267	0,264
560	0,417	0,388	0,374	0,356	0,335	0,321	0,305	0,291	0,279	0,270	0,262	0,259	0,255
600	0,394	0,370	0,354	0,342	0,321	0,304	0,290	0,278	0,271	0,260	0,249	0,244	0,235
630	0,384	0,357	0,344	0,331	0,311	0,295	0,281	0,268	0,258	0,248	0,241	0,229	0,234
650	0,366	0,344	0,330	0,318	0,299	0,287	0,274	0,257	0,248	0,242	0,232	0,221	0,225
700	0,363	0,337	0,323	0,311	0,296	0,280	0,266	0,254	0,242	0,236	0,227	0,215	0,214
710	0,357	0,332	0,319	0,306	0,291	0,276	0,260	0,249	0,239	0,230	0,223	0,212	0,212
750	0,344	0,320	0,312	0,300	0,278	0,263	0,252	0,239	0,231	0,223	0,216	0,213	0,209
800	0,335	0,311	0,301	0,289	0,274	0,257	0,244	0,233	0,223	0,215	0,209	0,205	0,203

Tab. 13.1.1. Coefficient of local pressure loss - square dampers

	1						•						
							A		r				
В	600	630	650	700	710	750	800	900	1000	1100	1250	1400	1500
180	1,261	1,246	1,234	1,225	1,219	1,208	1,197	1,177	1,162	1,148	1,136	1,124	1,117
200	0,989	0,981	0,970	0,963	0,960	0,951	0,942	0,926	0,914	0,903	0,892	0,884	0,878
225	0,768	0,757	0,739	0,732	0,724	0,718	0,712	0,699	0,690	0,681	0,666	0,654	0,650
250	0,649	0,639	0,631	0,630	0,625	0,620	0,613	0,602	0,595	0,587	0,580	0,574	0,571
280	0,586	0,583	0,561	0,556	0,551	0,546	0,539	0,532	0,524	0,512	0,499	0,491	0,482
300	0,522	0,508	0,504	0,503	0,502	0,496	0,488	0,480	0,465	0,455	0,449	0,447	0,440
315	0,454	0,449	0,443	0,441	0,439	0,433	0,430	0,423	0,417	0,412	0,407	0,402	0,400
355	0,391	0,386	0,380	0,378	0,377	0,372	0,370	0,363	0,358	0,353	0,349	0,345	0,343
400	0,342	0,337	0,331	0,330	0,329	0,325	0,323	0,316	0,312	0,308	0,305	0,302	0,299
450	0,303	0,299	0,295	0,294	0,293	0,290	0,286	0,281	0,278	0,274	0,271	0,267	0,266
500	0,275	0,272	0,271	0,268	0,266	0,263	0,261	0,256	0,252	0,249	0,246	0,244	0,242
550	0,261	0,258	0,253	0,248	0,246	0,244	0,243	0,238	0,235	0,232	0,227	0,224	0,223
560	0,253	0,249	0,246	0,245	0,243	0,240	0,238	0,234	0,230	0,227	0,224	0,222	0,221
600	0,233	0,232	0,230	0,229	0,228	0,224	0,220	0,218	0,214	0,211	0,208	0,206	0,204
630	0,232	0,229	0,226	0,225	0,224	0,221	0,218	0,215	0,212	0,209	0,206	0,204	0,202
650	0,222	0,219	0,217	0,215	0,214	0,212	0,209	0,203	0,201	0,199	0,194	0,191	0,189
700	0,212	0,212	0,211	0,210	0,208	0,206	0,204	0,201	0,198	0,196	0,193	0,190	0,188
710	0,210	0,210	0,209	0,208	0,207	0,205	0,203	0,199	0,195	0,193	0,191	0,189	0,187
750	0,205	0,202	0,200	0,199	0,198	0,197	0,195	0,191	0,187	0,184	0,182	0,180	0,178
800	0,200	0,198	0,196	0,195	0,194	0,192	0,189	0,186	0,183	0,181	0,178	0,177	0,176

13.2. Coefficient of local pressure loss ξ (-) - round dampers

D	180	200	225	250	280	315	355	400	450	500	560	630	710	800	900	1000
ξ	3,546	2,124	1,291	0,877	0,609	0,438	0,328	0,255	0,205	0,173	0,147	0,127	0,111	0,099	0,090	0,083

Tab. 13.2.1. Coefficient of local pressure loss - round dampers

14. Noise data

14.1. Level of acoustic output corrected with filter A.

 $L_{WA} = L_{W1} + 10 \log(S) + K_A$

L_{WA} [dB(A)] level of acoustic output corrected with filter A

- L_{W1} [dB] level of acoustic output L_{W1} related to the 1 m² section (see Tab. 14.3.1. and 14.3.2)
- S [m²] duct cross section
- K_A [dB] correction to the weight filter A (viz Tab. 14.3.3.)
- **14.2.** Level of acoustic output in octave ranges.

 $L_{Woct} = L_{W1} + 10 \log(S) + L_{rel}$

- L_{Woct} [dB] spectrum of acoustic output in octave range
- $L_{W1} \quad [dB] \quad level of acoustic output <math display="inline">L_{W1}$ related to the 1 m^2 section (see Tab. 14.3.1. and 14.3.2)
- S [m²] duct cross section
- L_{rel} [dB] relative level expressing the shape of the spectrum (see Tab. 14.3.4.)
- **14.3.** Table of acoustics values

Tab. 14.3.1. Level of acoustic output L_{W1} [dB] related to the 1 m² section - square dampers

		[-] ξ															
v [m/s]	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,5	2,0	2,5	3,0	4,0	5,0	8,0	10,0
2	15,5	18,7	20,9	22,6	24,0	25,2	26,3	27,2	28,0	31,2	33,4	35,1	36,5	38,8	40,5	44,2	45,9
3	26,1	29,2	31,5	33,2	34,6	35,8	36,9	37,8	38,6	41,7	44,0	45,7	47,1	49,4	51,1	54,7	56,5
4	33,6	36,7	39,0	40,7	42,1	43,3	44,3	45,3	46,1	49,2	51,5	53,2	54,6	56,9	58,6	62,2	64,0
5	39,4	42,5	44,8	46,5	47,9	49,1	50,2	51,1	51,9	55,0	57,3	59,0	60,4	62,7	64,4	68,0	69,8
6	44,1	47,3	49,5	51,3	52,7	53,9	54,9	55,8	56,6	59,8	62,0	63,8	65,2	67,4	69,2	72,8	74,5
7	48,2	51,3	53,5	55,3	56,7	57,9	58,9	59,8	60,7	63,8	66,1	67,8	69,2	71,4	73,2	76,8	78,6
8	51,6	54,8	57,0	58,8	60,2	61,4	62,4	63,3	64,1	67,3	69,5	71,3	72,7	74,9	76,7	80,3	82,0
9	54,7	57,9	60,1	61,8	63,2	64,4	65,5	66,4	67,2	70,4	72,6	74,3	75,7	78,0	79,7	83,4	85,1
10	57,4	60,6	62,8	64,6	66,0	67,2	68,2	69,1	70,0	73,1	75,3	77,1	78,5	80,7	82,5	86,1	87,9
11	59,9	63,1	65,3	67,1	68,5	69,7	70,7	71,6	72,4	75,6	77,8	79,6	81,0	83,2	85,0	88,6	90,3
12	62,2	65,4	67,6	69,3	70,7	71,9	73,0	73,9	74,7	77,9	80,1	81,8	83,2	85,5	87,2	90,9	92,6

						ξ	[-]					
w [m.s ⁻¹]	0,1	0,2	0,3	0,4	0,6	0,8	1	1,5	2	2,5	3	3,5
2	9,0	11,5	14,7	16,9	20,1	22,3	24,1	27,2	29,4	31,2	32,6	33,8
3	16,7	22,1	25,3	27,5	30,7	32,9	34,6	37,8	40,0	41,7	43,2	44,4
4	24,2	29,6	32,8	35,0	38,1	40,4	42,1	45,3	47,5	49,2	50,7	51,9
5	30,0	35,4	38,6	40,8	44,0	46,2	47,9	51,1	53,3	55,1	56,5	57,7
6	34,8	40,2	43,3	45,6	48,7	51,0	52,7	55,8	58,1	59,8	61,2	62,4
7	38,8	44,2	47,3	49,6	52,7	55,0	56,7	59,9	62,1	63,8	65,2	66,4
8	42,3	47,7	50,8	53,1	56,2	58,4	60,2	63,3	65,6	67,3	68,7	69,9
9	45,4	50,7	53,9	56,1	59,3	61,5	63,3	66,4	68,6	70,4	71,8	73,0
10	48,1	53,5	56,6	58,9	62,0	64,3	66,0	69,1	71,4	73,1	74,5	75,7
11	50,6	56,0	59,1	61,4	645	667	685	71,6	73,9	75,6	77,0	78,2
12	52,8	58,2	61,4	63,6	668	69	707	73,9	76,1	77,9	79,3	80,5

Tab. 14.3.2. Level of acoustic output L_{W1} [dB] related to the 1 m² section - round dampers

Tab. 14.3.3.	Correction to the weight filter A - square and round dampers
100.14.0.0.	Some and round ampers

w [m.s⁻¹]	2	3	4	5	6	7	8	9	10	11	12
K _A [dB]	-15,0	-11,8	-9,8	-8,4	-7,3	-6,4	-5,7	-5,0	-4,5	-4,0	-3,6

Tab. 14.3.4. Relative level expressing the shape of the spectrum L_{rel} - square and round dampers

				f	[Hz]			
w [m.s ⁻¹]	63	125	250	500	1000	2000	4000	8000
2	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2	-43,9	-56,4
3	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6	-37,4	-48,9
4	-3,9	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2	-43,9
5	-4,0	-4,1	-5,9	-9,4	-14,6	-21,5	-30,0	-40,3
6	-4,2	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6	-37,4
7	-4,5	-3,9	-4,9	-7,5	-11,9	-17,9	-25,7	-35,1
8	-4,9	-3,9	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2
9	-5,2	-3,9	-4,3	-6,4	-10,1	-15,6	-22,7	-31,5
10	-5,5	-4,0	-4,1	-5,9	-9,4	-14,6	-21,5	-30,0
11	-5,9	-4,1	-4,0	-5,6	-8,9	-13,8	-20,4	-28,8
12	-6,2	-4,3	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6

IV. MATERIAL, FINISHING

15. Material

15.1. Damper bodies are supplied in the design made of galvanized plate without any other surface finishing.

Damper blades are made of fire resistant asbestos free boards made of mineral fibres. Control devices of dampers has cover from mechanically resistant and standing plastic and rest

of the parts is galvanised without further surface treatment.

Springs are galvanized.

Thermal protective fuses are made of sheet brass, thickness = 0.5 mm.

Fasteners is galvanized. Fasteners is galvanized.

15.2. According to the customer's requirements, damper can be made of stainless material.

Specifications for stainless-steel models – classification of stainless steel:

- Class A2 Food-grade stainless steel (AISI 304 ČSN 17240)
- Class A4 Chemistry-grade stainless steel (AISI 316, 316L ČSN 17346, 17349)

The respective stainless steel is the material for all components present or accessing the damper interior; components outside the damper body are typically from galvanised sheet metal (fasteners for mounting the servo drive or mechanics, mechanics components except Item 4), frame components.

The following components, including the fasteners, are made from stainless steel at all times:

- 1) Damper body and all components permanently attached
- 2) Leaf holders, including pins, metal parts of leaf
- 3) Control components inside the damper (leaf angle selector, pin with lever)
- 4) Mechanical components entering the interior of damper body (lower sheet of mechanics, lock holder "1", lock lever "2", lock spring, 8 dia. stopper pin, mechanics pin)
- 5) Inspection hole cover including the clip and fasteners (if they are parts of the cover)
- 6) Bearing for torque transfer from the lever with pin on the angle selector at the leaf (made from AISI 440C)

The leaf of the damper is made from a single piece of homogeneous material Promatect-MST, thickness 40 mm.

Plastic, rubber and silicon components, sealants, foaming bands, glass-ceramic seals, housings, brass bearings of the leaf, servo drives, and end switches are identical for all material variants of the dampers.

The thermal link is identical for all material variants of the dampers. Upon specification by customer, the thermal link may be made from A4 stainless steel. The solder is standard, corresponding to the initialisation temperature.

The temperature-dependent initiator of the servo drive (sensor) is modified for stainless-steel variants of the dampers; the standard galvanised screws are replaced with stainless-steel M4 screws of corresponding class the counterpart has stainless-steel riveting M4 nuts.

Some fasteners and components are available in one class of stainless steel; the type will be used in all stainless-steel variants.

The leaf in the variants for chemical environments (Class A4) is always treated with a coating of chemically resistant Promat SR.

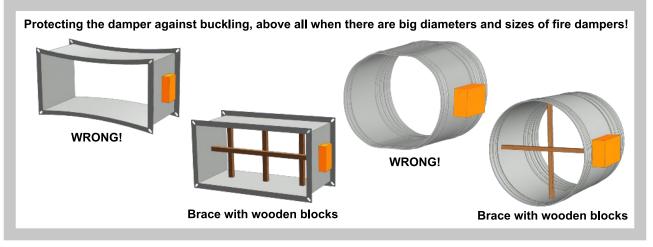
Any other requirements for the design shall be considered atypical and shall be addressed on an individual basis.

V. INSPECTION, TESTING

16. Inspection, testing

16.1. The appliance is constructed and preset by the manufacturer, its operation is dependent on proper installation and adjustment.

VI. TRANSPORTATION AND STORAGE


17. Logistic terms

- **17.1.** Dampers are transported by box freight vehicles without direct weather impact, there must not occur any sharp shocks and ambient temperature must not exceed +40°C. Dampers must be protected against mechanic damages when transported and manipulated. During transportation, the damper blade must be in the "CLOSED" position.
- **17.2.** Dampers are stored indoor in environment without any aggressive vapours, gases or dust. Indoor temperature must be in the range from -30°C to +40°C and maximum relative humidity 95 % (avoid condensation on the damper body). Dampers must be protected against mechanic damages when transported and manipulated.

VII. ASSEMBLY, ATTENDANCE, MAINTENANCE AND REVISIONS

18. Assembly

- **18.1.** All effective safety standards and directives must be observed during fire damper assembly.
- **18.2.** The damper body should not be deformed in the course of bricking in. Once the damper is built in, its blade should not grind on the damper body during opening or closing.
- Fig. 107 Embedding / fixing the damper

18.3. To ensure reliable fire damper function it is necessary to avoid blocking the closing mechanism and contact surfaces with collected dust, fibre and sticky materials and solvents.

19. Entry into service and revisions

19.1. Before entering the dampers into operation after their assembly and by sequential checks, the following checks must be carried out. Visual inspection of proper damper integration, inside damper area, damper blade, contact surfaces and silicon sealing. Check of thermal protective fuse and closing mechanism. Check the closing function of the damper blade. This can be done by removing of thermal fuse from damper body.

Before entering the dampers with actuating mechanism into operation after their assembly and by sequential checks. Check of blade displacement into the breakdown position "CLOSED" can be done after cutting off the actuating mechanism supply (e.g. by pressing the RESET button at the thermoelectrical starting mechanism BAT or cutting off the supply from ELECTRICAL FIRE SIGNALISATION). Check of blade displacement back into the "OPEN" position can be done after restoration of power supply (e.g. by releasing the RESET button or restoration of supply from ELECTRICAL FIRE SIGNALISATION). Without power supply, the damper can be operated manually and fixed in any required position. Release of the locking mechanism can be achieved manually or automatically by applying the supply voltage. It is recommended to provide periodical checks, maintenance and service actions on Fire Equipment by Authorized persons. The authorized persons can be trained by Producer, or by authorized Distributor. All effective safety standards and directives must be observed during fire damper assembly.

For regular or exceptional inspection of interior of fire damper, micro-camera device can be used. On each fire damper is ispection hole. In the case of inspection by camera, take out the black rubber cap, insert the camera inside the damper, check interior and at the end of inspection, put the rubber cap back tightly to cover the empty hole.

19.2. Before entering the dampers with manual control (design .01, .11, .80) into operation after their assembly and by sequential checks and following checks must be carried out.

Verification of closing device and thermal fuse:

When you verify functionality of mechanism, follow these steps:

Adjustment of damper blade in position "CLOSED" shall be made following:

- Damper is in "OPEN" position.
- By pressing control button mechanism, you close damper in "CLOSED" position.
- Check damper blade adjustment in "CLOSED" position.
- Closing must be strong and control lever must be in "CLOSED" position.
- If closing is not sufficiently strong and damper control lever is not in "CLOSED" position, you must contact manufacturer and order new mechanism.
- Mechanism dimension is marked M1 to M4, according to internal forces of spring.

Adjustment of damper blade in position "OPEN" shall be made following:

- Rotate control lever by 90°.
- Lever get fasten automatically in "OPEN" position.
- Check damper blade adjustment in "OPEN" position.

Checking function and the status of the thermal fuse shall be made following:

- To check the function and the status of the fuse is possible to remove whole mechanism from the body of fire damper mechanism is attached to the dampers body with four screws M6.
- Removing the thermal fuse from the fuse holder of initiation device, check its correct functionality.
- There must be a release lever, which releases initiation lever of control and mechanism will displace to "CLOSED" position.
- If not, you need to contact the manufacturer and order new mechanism.
- Mechanism dimension is marked M1 to M4, according to internal forces of spring.

19.3. Before entering the dampers with actuating mechanism into operation after their assembly and by sequential checks and following checks must be carried out.

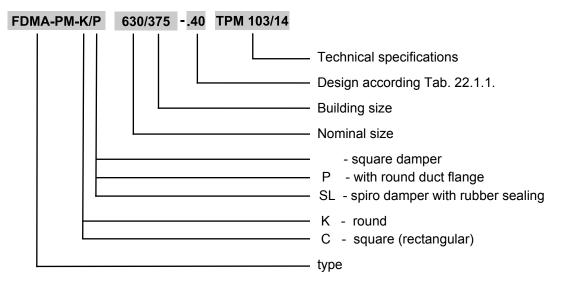
Check of blade displacement into the breakdown position "CLOSED" can be done after cutting off the actuating mechanism supply (e.g. by pressing the RESET button at the thermoelectrical starting mechanism BAT or cutting off the supply from ELECTRICAL FIRE SIGNALISATION). Check of blade displacement back into the "OPEN" position can be done after restoration of power supply (e.g. By releasing the RESET button or restoration of supply from ELECTRICAL FIRE SIGNALISATION). FIRE SIGNALISATION).

19.4. Manual operation

Without power supply, the damper can be operated manually and fixed in any required position. Release of the locking mechanism can be achieved manually or automatically by applying the supply voltage.

- **19.5.** It is recommended to provide periodical checks, maintenance and service actions on Fire Equipment by Authorized persons schooled by Producer.
- **19.6.** All effective safety standards and directives must be observed during fire damper assembly.
- **19.7.** Dampers could be displaced into position "CLOSED" only in case that ventilator, or Air Handling Unit is switched off. The goal is the securing of proper closing and safe function of Fire Damper in case of Fire.

20. Spare parts


- **20.1.** Spare parts are supplied only on basis of an order.
- **20.2.** Control for square damper and round damper is identical.

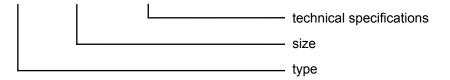
21. Restore function of actuating mechanism after fuses initiation

- **21.1.** If fuse Tf1 is initiated (duct outside temperature) than is necessary to change thermoelectrical starting mechanism BAT72B-S. Whereas is initiation temperature higher than actuator mechanism operating temperature +50°C, recommended actuating mechanism manufacturer make complete revision or change actuating mechanism and thermoelectrical starting mechanism.
- **21.2.** If fuses Tf2/Tf3 are initiated (duct inside temperature) than is possible change only part ZBAT72 or ZBAT95 (according initiating temperature).

VIII. ORDERING INFORMATION

- 22. Ordering key
 - 22.1. Fire damper

If installation holders, installation frame or design for installation in Weichschott system are requested, it has to be mentioned separately in the order. Installation frame could be fixed to the damper body or supplied separately.


Tab. 22.1.1. Dampers design

Dampers design	Additional digit
Manual and thermal	.01
Manual and thermal with a terminal switch ("CLOSED")	.11
With actuating mechanism BF 230-TN (BFL, BFN 230-T)	.40
With actuating mechanism BF 24-TN (BFL, BFN 24-T), with smoke detector ORS 142 K and with supply device BKN 230-24-MOD (voltage AC 230 V)	.41
With actuating mechanism BF 24-TN (BFL, BFN 24-T)	.50
With actuating mechanism BF 24-TN (BFL, BFN 24-T), with smoke detector ORS 142 K (voltage AC/DC 24 V)	.51
With communication and supply device BKN 230-24 and actuating mechanism BF 24-TN-ST (BFL, BFN 24-T-ST)	.60
With communication and supply device BKN 230-24-C-MP, with actuating mechanism BF 24-TN-ST (BFL, BFN 24-T-ST) and with smoke detector ORS 142 K	.61
With communication and supply device BKN 230-24MP and actuating mechanism BF 24TL-TN-ST (Top-Line) for connection to MP-Bus	.62
With communication and supply device BKN 230-24-MOD, with actuating mechanism BF 24-TN-ST (BFL, BFN 24-T-ST) and with smoke detector ORS 142 K	.63
With communication and supply device BKN 230-24LON and with actuating mechanism BF 24TL-TN-ST (Top-Line) for connection to LonWorks	.64
Manual and thermal with two terminal switches ("OPEN", "CLOSED")	.80

Some designs are possible to supply with optical smoke detector ORS 142 K. For more information contact manufacturer.

22.2. Reinforcement - damper placement outside wall or ceiling construction

VRM-PM 800x400 TPM 103/14

IX. PRODUCT DATA

23. Data label

23.1. Data label is placed on the damper body.

Fig. 108 Data label

ΜΛΝϽίκ	MANDÍK, a.s.	Dobříšská 550
	267 24 Hostomice	Czech Republic
FIRE DAMPER FDMA PM		
CLASSIFICATION:		
SIZE:	DESIGN:	
SERIAL NUMBER:	WEIGHT (kg):
TPM 103/14 Certificate: 1391-CPF	R-2016/0158 14 E	EN 15650:2010

MANDÍK, a.s. Dobříšská 550 26724 Hostomice Czech Republic Tel.: +420 311 706 706 E-Mail: mandik@mandik.cz www.mandik.com